Origanum majorana Essential Oil—A Review of Its Chemical Profile and Pesticide Activity
Abstract
:1. Introduction
2. Chemical Profile of O. majorana Essential Oil
Plant Material | Extraction Method | Column Used for the GC Analysis | % Yield | Chemical Composition | Region | Reference |
---|---|---|---|---|---|---|
200 g of plant material (the part used is not identified) | Hydrodistillation (clevenger apparatus) | VB-5 30 × 0.25 mm, 0.25 μm | 0.8 mL/100 g dry material | 4-terpinene (28.96%), γ-terpinene (18.57%) and α-terpinene (12.72%), sabinene (8.02%) | Morocco | [27] |
1000 g of the aerial parts | Hydrodistillation (according to European Pharmacopeia 5th edition guidelines) | DB-5 30 m × 0.25 mm, 0.33 μm | 0.97 mL/100 g dry material | terpinen-4-ol (34.1%), α-terpinene (19.2%), terpineol (8.9%) | South West Morocco | [60] |
10 g of plant material | Steam distillation (Likens–Nickerson apparatus) | CP-Sil 8 30 m, 0.32 mm | - | thymol (14.0%), 3-carene (10.4%), 2-carene (7.8%), terpinen-4-ol (7.8%), sabinene hydrate (6.0%) | Greece | [57] |
100 g of aerial part (stems, leaves and flowers) | Hydrodistillation (clevenger apparatus) | HP-5MS 30 m × 0.25 mm, 0.25 μm | 1.85 mL/100 g dry material | terpinen-4-ol (23.2%), cis-sabinene hydrate (17.5%), γ-terpinene (10.5%), p-cymene (9%), α-terpineol (5.6%) | Tunisia | [58] |
100 g of leaves | Hydrodistillation (Quik-fit apparatus) | HP-5MS 30 m × 0.25 mm, 0.25 mm | 0.09 mL/100 g dry material | terpinen-4-ol (555.1 μg/g dw), γ-terpinene (192.8 mg/g dw), cis sabinene hydrate (168.8 mg/g dw) | Tunisia | [35] |
100 g of aerial parts) three developmental stages: vegetative, flowering and post-flowering) | Hydrodistillation (clevenger apparatus) | HP-5MS 30 m × 250 m, 0.25 μM | - | terpinen-4-ol (76.94–37.15), cyclohexanol 3,3,5 trimethyl (15.99–5.41), α-terpineol (11.34–0.94); β-cymene (10.56–1.88) | Tunisia | [47] |
- | Steam distillation | Carbowax 20M 25 m × 0.3 mm | 0.20 mL/100 g dry material | terpinen-4-ol (37.10%), p-cymene (12.05%), α-terpineol (7.15%) | Greece | [69] |
Leaves | Hydrodistillation (clevenger apparatus) | DB-5MS 30 m × 0.25 mm × 0.25 μm | 1.2 mL/100 g dry material | terpinen-4-ol (29.97%), γ-terpinene (15.40%), trans-sabinene hydrate (10.93%), α-terpinene (6.86%) and α-terpineol (6.54%) | Egypt | [14] |
5 g | Hydrodistillation (clevenger apparatus) | Rtx-5MS 30 m × 0.25 mm × 0.25 μm | - | terpinen-4-ol (19.7%), γ-terpinene (18.4), α-terpinene (11.4%), cis-sabinene hydrate (8.6%), sabinene (7.8%) | Commercial sample Germany | [80] |
Leaves | Hydrodistillation (clevenger apparatus) | DB5 30 m × 0.25 mm × 0.25 µm | - | carvacrol (57.86%), thymol (13.54%), trans-caryophyllene (11.52%), cymene (6.78%) | Iran | [49] |
Aerial parts | Hydrodistillation (clevenger apparatus) | DB-5 30 m × 0.25 mm, 0.25 μm | - | terpinen-4-ol (31.15%), cis-sabinene hydrate (15.76%), p-cymene (6.83%), sabinene (6.91%), trans-sabinene hydrate (3.86%), α-terpineol (3.71%) | India | [36] |
500 g of leaves | Hydrodistillation (clevenger apparatus) | HP-5MS 30 m × 0.25 mm, 0.25 μm | 0.6 mL/100 g dry material | cis-sabinene hydrate (30.2%), terpinen-4-ol (28.8%), γ-terpinene (7.2%), α-terpineol (6.9%), trans-sabinene hydrate (4.4%), linalyl acetate (3.8%), α-terpinene (3.6%) | Venezuela | [79] |
20 g of aerial part (two vegetative and two generative growth stages) | Hydrodistillation | HP-Innowax 30 m × 0.25 mm × 0.25 mm | 0.04 to 0.09 mL/100 g dry material | terpinen-4-ol (29.13–32.57%), cis-sabinene hydrate (19.9–29.27%), trans-sabinene hydrate (3.5–11.61%), γ-terpinene (2.11–8.20%), bornyl acetate (1.52–2.94%), linalool (1.05–1.39%) | Tunisia | [37] |
- | Hydrodistillation | Supelcowax 10, 60 m × 0.25 mm, 0.25 μm | 0.8 mL/100 g dry material | terpinen-4-ol (30.3%), γ-terpinene (14%), linalool (12%), p-cymol (9.8%), α-pinene (5.9%), camphene (5.8%) | Hungary | [38] |
Flowering plants | Hydrodistillation (clevenger apparatus) | Carbowax 20 M, 50 m × 0.32 mm i.d, 0.20 μm | 1 mL/100 g dry material | terpinen-4-ol (38.4%), cis-sabinene hydrate (15.0%), p-cymene (7.0%), γ-terpinene (6.9%). | Reunion Island | [39] |
- | Hydrodistillation (clevenger apparatus) | Equity-5 60 m × 0.32 mm, 0.25 μm | 0.45–0.50 mL/100 g dry material | cis-sabinene hydrate (20.23–46.27%), terpinen-4-ol (9.32–23.43%), γ-terpinene (5.67–13.76%), α-terpinene (2.98–8.38%), sabinene (4.90–8.17%), trans-sabinene hydrate (5.01–7.34%), α-terpineol (3.41–4.17%) | India | [50] |
Leaves | Hydrodistillation (clevenger apparatus) | DB-5 (5% phenylmethylpolysiloxane) capillary column, 60 m × 0.25 mm | 1.6 mL/100 g dry material | terpinen-4-ol (30.0%), γ-terpinene (11.3%), trans-sabinene hydrate (10.8%) | Egypt | [26] |
131 g leaves | Hydrodistillation (clevenger apparatus) | OPTIMAL-5 0.25 μm, 30 M, 0.25 mm | - | pulegone (57.05%), verbenone (16.92%), trans-menthone (8.57%) | Brasil | [60] |
0.5 kg of aerial part | Hydrodistillation (clevenger apparatus) | HP-5 30 m × 0.25 mm, 0.25 μm | - | carvacrol (74.8%), thymol (2.7%) | Greece | [19] |
- | - | DB-1MS 30 m × 0.25 mm, 0.25 µm | - | terpinen-4-ol (22.96%), linalool (15.32%), γ-terpinene (12.92%), p-cymene (6.37%) | Commercial sample, Korea | [24] |
- | - | VF-5MS 30 m × 0.25 mm, 0.25 µm | - | terpinen-4-ol (33.8%), terpinolene (16.5%), linalool (14.7%), α-terpinene (6.8%) | Commercial sample | [28] |
20 g dried leaves | Hydrodistillation (clevenger apparatus) | - | 12.70 μL·g−1 | terpinen-4-ol (23.83%) cis-β-terpineol (21.63%), | - | [20] |
- | - | DB-5MS 30 m × 0.25 mm, 0.25 µm | - | 1,8-cineole (50.96%), linalool (24.04%), limonene (6.38%) | India | [64] |
Two samples from different regions were analyzed | Hydrodistillation | - | 6.5–7.7 mL/100 g dry material | carvacrol (78.27–79.46%), p-cymene (4.31–4.68%), y-terpinene (3.72–4.84%) | Turkey | [56] |
100 g of fresh plant material | Steam distillation | SE-54 50 m × 0.32 mm | linalool (32.68%), terpinen-4-ol (22.30%), p-cymene (8.07%) | Morocco | [61] | |
80 g of aerial parts | Hydrodistillation (clevenger apparatus) | HP-5MS 30 m × 0.25 mm, 0.25 µm | 17.2 g/kg | terpinen-4-ol (20.9%), linalool (15.7%), linalyl acetate (13.9%), limonene (13.4%), α-terpineol (8.57%) | Pakistan | [40] |
1 kg of dried aerial parts | Hydrodistillation | DB-5 30 m × 0.25 mm, 0.33 µm | 0.4 mL/100 g dry material | terpinen-4-ol (29.6%), δ-2-carene (20.1%), camphene (13.4%), α-pinene (7.9%) | Italy | [12] |
100 g dried aerial parts | Hydrodistillation (clevenger apparatus) | Cp WAX 52 CB 50 m × 0.32 mm, 1.2 µm | - | carvacrol (52.5%), linalool (45.4%), | Turkey | [51] |
100 g of dried aerial part |
| TR-5 MS 30 m × 0.32 mm, 0.25 μm | (HD) 0.73 mL/100 g dry material (MWE) 0.80 mL/100 g dry material (SD) 0.66 mL/100 g dry material | terpinen-4-ol MWE: 22.28%, HD: 28.49%, SD: 26.72% trans-sabinene hydrate MWE: 13.05%, HD: 11.69%, SD: 3.04% γ-terpinene MWE: 13.20%, HD: 7.87%, SD: 13.72% α-terpinene MWE: 9.07%, HD 3.89%, SD: 9.46% | Egypt | [48] |
300 g of plant material | Hydrodistillation (clevenger apparatus) | - | 1.7 mL/100 g dry material | terpin-4-ol (27.32%), γ-terpinene (15.67%), α-terpinene (11.08%) α-terpineol (6.90%), sabinene (5.53%) | Tunisia | [52] |
Aerial parts | Extraction with organic solvent | ZB-5MS (Phenomenex), 30 m × 0.25 mm, 0.25 µm | trans-sabinene hydrate (16.0%), sabinene (14.1%), cis-sabinene hydrate (11.8%), γ-terpinene (10.2%), α-terpinyl acetate (10.0%), α-terpinene (8.9%) | Yemen | [63] | |
- | - | DB-5 30 × 0.25 × 2.5 mm | - | terpinen-4-ol (20.55%), terpinene (13.13%), trans-terpineol (12.67%), 2-carene (7.67%), sabinene (6.96%) | - | [41] |
- | - | ZB-5 MS 30 m, 0.25 mm, 0.25 μm | - | linalyl acetate (16.0%), linalool (14.7%), α-terpineol (13.8%), limonene (11.5%) | Commercial sample produced in Ukraine | [66] |
- | Hydrodistillation (clevenger apparatus) | HP-5MS 30 m× 0.25 mm, 0.25 mm | - | terpinen-4-ol (32.69%), γ-terpinene (12.88%), trans-sabinene hydrate (8.47%), α-terpinene (7.98%), sabinene (6.21%) | - | [16] |
200 g of aerial part | Hydrodistillation (Dean–Stark apparatus) | VB5 30 m × 0.25 mm 0.25 μm | 1.06 mL/100 g dry material | Sabinene hydrate (14.08%), α-terpineol (13.95%), (-)-terpinen-4-ol (13.07%), (+)-sabinene (5.67%) | Morocco | [62] |
- | - | HP-5 30 m× 0.32 mm× 0.25 mm | - | 1,8-cineole (20.9%), terpinen-4-ol (20.4%), p-cymene (7.0%), sabinene (6.7%) | Commercial sample Egypt | [65] |
Dried leaves | Hydrodistillation (clevenger apparatus) | DB-5 30 m × 0.25 mm 0.25 mm | 1.20 mL/100 g dry material | terpinen-4-ol (30.41%), γ-terpinene (13.94%), cis-sabinene hydrate (9.64%), α-terpinene (7.70%) | Egypt | [53] |
- | - | Restek 30 m × 0.32 mm, 0.50 μm | - | terpinen-4-ol (21.3%), trans-sabinene hydrate (15.5%), γ-terpinene (14.0%) and α-terpinene (8.9%) | Commercial product Albania | [54] |
Aerial parts of plant material collected in different regions | Hydrodistillation (clevenger apparatus) | FSC 60 m × 0.25 mm, 0.25 µm | - | terpinen-4-ol (8–14%), linalyl acetate (7–10%), trans-sabinene hydrate (6–7%) | Turkey | [42] |
100 g of air-dried aerial parts | Hydrodistillation (Dean–Stark apparatus) | HP-101 25 m × 0.32 mm | 1.40 mL/100 g dry material | terpinen-4-ol (32.8%), y-terpinene (9.9%), cis-sabinene hydrate (8.6%) | Tunisia | [55] |
Dried leaves | Hydrodistillation (clevenger apparatus) | TR-5MS 30 m × 0.25 mm, 0.25 μm | 2.5 mL/100 g dry material | terpinen-4-ol (33.0%), caryophyllene oxide (11.9%), p-cymene (6.8%), α-terpineol (6.7%) spathulenol (6.0%) | Commercial sample China | [43] |
200 g dried flowers 200 g dried leaves | Hydrodistillation (clevenger apparatus) | Supelcowax 10 30 m × 0.32 mm, 0.5 pm | 12.8 mL/100 g dry material (flowers) 8% ml/100 g dry material (leaves) | Leaves: cis-sabinene hydrate (33.3%), terpinen-4-ol (21.6%), y-terpinene (8.3%), α-terpineol (7.3%), trans-sabinene hydrate (4.7% ) Flowers: cis-sabinene hydrate (24%), terpinen-4-ol (16.6%), α-terpineol (12.4%), y-terpinene (10.6%) Stems: terpinen-4-ol (19%), α-terpineol (14.25%), y-terpinene (11.1%), cis-sabinene hydrate (7.4%) | Cyprus | [70] |
Flowers | Steam distillation | DB-1 60 m × 0.25 mm, 0.25 pm | 0.3 mL/100 g dry material | linalyl acetate (26.1%), sabinene (12%), y-terpinene (8.8%), cis-sabinene hydrate (8.7%) | Iran | [67] |
- | - | - | - | - | Egypt | [44] |
- | - | DB-1 30 m × 0.25 mm, 0.25 μm | - | terpinen-4-ol (20.8%), γ-Terpinene (14.1%), cis-sabinene hydrate (10.8%) sabinene (9.3%), α-terpinene (9.2%) | Commercial sample UK | [45] |
300 g of aerial parts | Hydrodistillation (clevenger apparatus) | - | 1.72 mL/100 g dry material | terpinen-4-ol (26.7%), γ-terpinene (16.96%), p-menthenol (11.85%), α-terpinen (9.22%), α-terpineol (5.76%), p-cymene (5.27%) | Tunisia | [46] |
Dried leaves | Hydrodistillation (clevenger apparatus) | Durabond-DB5 30 m × 0.25 mm × 0.25 μm | - | γ-terpinene (25.73%), α-terpinene (17.35%), terpinen-4-ol (17.24%), sabinene (10.8%), β-phellandrene | Egypt | [68] |
200 g aerial part |
| HP-5 ms capillary 30 m × 0.25 mm, 0.25 μm | 5 mL/100 g of dry material |
| Greece | [71] |
- | Hydrodistillation (clevenger apparatus) | - | 0.2 mL/100 g of dry material | carvacrol (43.7%), thymol (18.3%), γ-terpinene (14.1%), o-cymene (8.1%), α-terpinene (2.0%) | Greece | [83] |
3. Insecticidal, Fumigant and Repellent Activity of O. majorana Essential Oil
4. Conclusions and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ramos da Silva, L.R.; Ferreira, O.O.; Cruz, J.N.; de Jesus Pereira Franco, C.; Oliveira Dos Anjos, T.; Cascaes, M.M.; Almeida da Costa, W.; Helena de Aguiar Andrade, E.; Santana de Oliveira, M. Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. Evid.-Based Complement. Altern. Med. 2021, 2021, 6748052. [Google Scholar] [CrossRef] [PubMed]
- Oalđe Pavlović, M.; Kolarević, S.; Đorđević, J.; Jovanović Marić, J.; Lunić, T.; Mandić, M.; Kračun Kolarević, M.; Živković, J.; Alimpić Aradski, A.; Marin, P.D.; et al. A Study of Phytochemistry, Genoprotective Activity, and Antitumor Effects of Extracts of the Selected Lamiaceae Species. Plants 2021, 10, 2306. [Google Scholar] [CrossRef] [PubMed]
- Tamokou, J.D.D.; Mbaveng, A.T.; Kuete, V. Antimicrobial Activities of African Medicinal Spices and Vegetables in Medicinal Spices and Vegetables from Africa. In Medicinal Spices and Vegetables from Africa, 1st ed.; Kuete, V., Ed.; Elsevier Academic Press: Cambridge, MA, USA, 2017; pp. 207–237. ISBN 978-0-12-809286-6. [Google Scholar]
- Singla, P.; Vasudeva, N. Origanum majorana L.-Phyto-pharmacological review. Indian J. Nat. Prod. Resour. 2015, 6, 261–267. [Google Scholar]
- Bina, F.; Rahimi, R. Sweet Marjoram: A Review of Ethnopharmacology, Phytochemistry, and Biological Activities. Evid. Based Complement. Altern. Med. 2017, 22, 175–185. [Google Scholar] [CrossRef]
- Hossain, M.B.; Camphuis, G.; Aguiló-Aguayo, I.; Gangopadhyay, N.; Rai, D.K. Antioxidant activity guided separation of major polyphenols of marjoram (Origanum majorana L.) using flash chromatography and their identification by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J. Sep. Sci. 2014, 37, 3205–3213. [Google Scholar] [CrossRef] [PubMed]
- Sahranavard, S.; Ghafari, S.; Mosaddegh, M. Medicinal plants used in Iranian traditional medicine to treat epilepsy. Seizure 2014, 23, 328–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaghnouje, A.; Mechchate, H.; Es-safi, I.; Alotaibi, A.A.; Noman, O.M.; Nasr, F.A.; Al-zharani, M.; Cerruti, P.; Calarco, A.; EL Fatemi, H.; et al. Anxiolytic, Antidepressant-Like Proprieties and Impact on the Memory of the Hydro-Ethanolic Extract of Origanum majorana L. on Mice. Appl. Sci. 2020, 10, 8420. [Google Scholar] [CrossRef]
- Gutiérrez, R.M.P.; Felipe Fernando Martínez Jerónimo, F.F.M.; Soto, J.G.C.; Ramírez, A.M.; Mendoza, M.F.E. Optimization of ultrasonic-assisted extraction of polyphenols from the polyherbal formulation of Cinnamomum verum, Origanum majorana, and Origanum vulgare and their anti-diabetic capacity in zebrafish (Danio rerio). Heliyon 2022, 8, e08682. [Google Scholar] [CrossRef]
- Soliman, A.M.; Desouky, S.; Marzouk, M.; Sayed, A.A. Origanum majorana Attenuates Nephrotoxicity of Cisplatin Anticancer Drug through Ameliorating Oxidative Stress. Nutrients 2016, 8, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouedrhiri, W.; Mechchate, H.; Moja, S.; Mothana, R.A.; Noman, O.M.; Grafov, A.; Greche, H. Boosted Antioxidant Effect Using a Combinatory Approach with Essential Oils from Origanum compactum, Origanum majorana, Thymus serpyllum, Mentha spicata, Myrtus communis, and Artemisia herba-alba: Mixture Design Optimization. Plants 2021, 10, 2817. [Google Scholar] [CrossRef]
- Della Pepa, T.; Elshafie, H.S.; Capasso, R.; De Feo, V.; Camele, I.; Nazzaro, F.; Scognamiglio, M.R.; Caputo, L. Antimicrobial and Phytotoxic Activity of Origanum heracleoticum and O. majorana Essential Oils Growing in Cilento (Southern Italy). Molecules 2019, 24, 2576. [Google Scholar] [CrossRef]
- Arranz, E.; Jaime, L.; Lopez, M.C.; Reglero, G.; Santoyo, S. Supercritical fluid extraction as an alternative process to obtain essential oils with anti-inflammatory properties from marjoram and sweet basil. Ind. Crop. Prod. 2015, 67, 121–129. [Google Scholar] [CrossRef]
- Mossa, A.T.; Nawwar, G.A. Free radical scavenging and antiacetylcholinesterase activities of Origanum majorana L. essential oil. Hum. Exp. Toxicol. 2011, 30, 1501–1513. [Google Scholar] [CrossRef] [PubMed]
- Athamneh, K.; Alneyadi, A.; Alsamri, H.; Alrashedi, A.; Palakott, A.; El-Tarabily, K.A.; Eid, A.H.; Al Dhaheri, Y.; Iratni, R. Origanum majorana Essential Oil Triggers p38 MAPK-Mediated Protective Autophagy, Apoptosis, and Caspase-Dependent Cleavage of P70S6K in Colorectal Cancer Cells. Biomolecules 2020, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- Abbasi-Maleki, S.; Kadkhoda, Z.; Taghizad-Farid, R. The antidepressant-like effects of Origanum majorana essential oil on mice through monoaminergic modulation using the forced swimming test. J. Tradit. Complement. Med. 2019, 10, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Ou, M.C.; Hsu, T.F.; Lai, A.C.; Lin, Y.T.; Lin, C.C. Pain relief assessment by aromatic essential oil massage on outpatients with primary dysmenorrhea: A randomized, double-blind clinical trial. J. Obstet. Gynaecol. Res. 2012, 38, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Aboelhadid, S.M.; Abdel-Tawab, H.; Mahran, H.A.; Daferera, D.; Sokmen, A.; Al-Quraishy, S.; Abdel-Baki, A.S. Synergistic larvicidal and repellent effects of essential oils of three Origanum species on Rhipicephalus annulatus tick. Exp. Appl. Acarol. 2022, 87, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Giatropoulos, A.; Kimbaris, A.; Michaelakis, A.; Papachristos, D.P.; Polissiou, M.G.; Emmanouel, N. Chemical composition and assessment of larvicidal and repellent capacity of 14 Lamiaceae essential oils against Aedes albopictus. Parasitol. Res. 2018, 117, 1953–1964. [Google Scholar] [CrossRef]
- Prabu, S.; Jing, D.; Chandran, V.; Mathew, P. Insecticidal activity of Origanum majorana L. essential oil as anti-cholinergic agent. Entomol. Res. 2020, 50, 402–413. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [Green Version]
- Fierascu, R.C.; Fierascu, I.C.; Dinu-Pirvu, C.E.; Fierascu, I.; Paunescu, A. The application of essential oils as a next-generation of pesticides: Recent developments and future perspectives. Z. Naturforsch. C J. Biosci. 2020, 75, 183–204. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Gallardo, K.; Olivero-Verbel, J.; Stashenko, E.E. Repellent activity of essential oils and some of their individual constituents against Tribolium castaneum herbst. J. Agric. Food Chem. 2011, 59, 1690–1696. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Lee, H.R.; Jang, M.J.; Jung, C.S.; Park, I.K. Fumigant Toxicity of Lamiaceae Plant Essential Oils and Blends of Their Constituents against Adult Rice Weevil Sitophilus oryzae. Molecules 2016, 21, 361. [Google Scholar] [CrossRef] [Green Version]
- Kordali, Ş.; Usanmaz, A.; Bayrak, N.; Çakır, A. Fumigation of volatile monoterpenes and aromatic compounds against adults of Sitophilus granarius (L.) (Coleoptera: Curculionidae). Rec. Nat. Prod. 2017, 11, 362. [Google Scholar]
- Abbassy, M.A.; Abdelgaleil, S.A.M.; Rabie, R.Y.A. Insecticidal and synergistic effects of Majorana hortensis essential oil and some of its major constituents. Entomol. Exp. Appl. 2009, 131, 225–232. [Google Scholar] [CrossRef]
- El-Akhal, F.; El Ouali Lalami, A.; Ez Zoubi, Y.; Greche, H.; Guemmouh, R. Chemical composition and larvicidal activity of essential oil of Origanum majorana (Lamiaceae) cultivated in Morocco against Culex pipiens (Diptera: Culicidae). Asian Pac. J. Trop. Biomed. 2014, 4, 746–750. [Google Scholar] [CrossRef]
- Pavela, K.R.; Stepanycheva, E.; Shchenikova, A.; Chermenskaya, T.; Petrova, M. Essential oils as prospective fumigants against Tetranychus urticae. Ind. Crops Prod. 2016, 94, 755–761. [Google Scholar] [CrossRef]
- Ayvaz, A.; Karaborklu, S.; Sagdic, O. Fumigant toxicity of five essential oils against the eggs of Ephestia kuehniella zeller and Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Asian J. Chem. 2009, 21, 596–604. [Google Scholar]
- Pavela, R. Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia 2005, 76, 691–696. [Google Scholar] [CrossRef]
- Sharma, N.; Dubey, N.K.; Sharma, K. Screening of Insecticidal Activity of Origanum majorana Oil Against Tribolium Castenium. Biosci. Biotechnol. Res. Asia 2008, 6, 203–208. [Google Scholar]
- Yang, Y.; Isman, M.B.; Tak, J.H. Insecticidal Activity of 28 Essential Oils and a Commercial Product Containing Cinnamomum cassia Bark Essential Oil against Sitophilus zeamais Motschulsky. Insects 2020, 11, 474. [Google Scholar] [CrossRef] [PubMed]
- Werker, E. Function of essential oil-secreting glandular hairs in aromatic plans of Lamiaceae: A review. Flavour Fragr. J. 1993, 8, 249–255. [Google Scholar] [CrossRef]
- Salakhutdinov, N.; Volcho, K.; Yarovaya, O. Monoterpenes as a renewable source of biologically active compounds. Pure Appl. Chem. 2017, 89, 1105–1117. [Google Scholar] [CrossRef]
- Jelali, N.; Dhifi, W.; Chahed, T.; Marzouk, B. Salinity effects on growth, essential oil yield and composition and phenolic compounds content of marjoram (Origanum majorana L.) leaves. J. Food Biochem. 2011, 35, 1443–1450. [Google Scholar] [CrossRef]
- Raina, A.P.; Negi, K.S. Essential oil composition of Origanum majorana and Origanum vulgare spp. hirtum growing in India. Chem. Nat. Compd. 2012, 47, 1015–1017. [Google Scholar] [CrossRef]
- Sellami, I.H.; Maamouri, E.; Chahed, T.; Wannes, W.A.; Kchouk, M.E.; Marzouk, B. Effect of growth stage on the content and composition of the essential oil and phenolic fraction of sweet marjoram (Origanum majorana L.). Ind. Crops Prod. 2009, 30, 395–402. [Google Scholar] [CrossRef]
- Vagi, E.; Simandi, B.; Suhajda, A.; Hethelyi, E. Essential oil composition and antimicrobial activity of Origanum majorana L. extracts obtained with ethyl alcohol and supercritical carbon dioxide. Food Res. Int. 2005, 38, 51–57. [Google Scholar] [CrossRef]
- Vera, R.R.; Chane-Ming, J. Chemical composition of the essential oil of marjoram (Origanum majorana L.) from Reunion Island. Food Chem. 1999, 66, 143–145. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Rasheed, S.; Nigam, P.S.; Janneh, O.; Sarker, S.D. Composition, antioxidant and chemotherapeutic properties of the essential oils from two Origanum species growing in Pakistan. Rev. Bras. Farmacogn. 2011, 21, 943–952. [Google Scholar] [CrossRef] [Green Version]
- Da Cunha, J.A.; de Ávila Scheeren, C.; Fausto, V.P.; de Melo, L.; Henneman, B.; Frizzo, C.P.; de Almeida Vaucher, R.; Castagna de Vargas, A.; Baldisserotto, B. The antibacterial and physiological effects of pure and nanoencapsulated Origanum majorana essential oil on fish infected with Aeromonas hydrophila. Microb. Pathog. 2018, 124, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Tabanca, N.; Özek, T.; Baser, K.H.C.; Tümen, G. Comparison of the Essential Oils of Origanum majorana L. and Origanum x majoricum Cambess. J. Essent. Oil Res. 2004, 16, 248–252. [Google Scholar] [CrossRef]
- Jiang, Z.T.; Li, R.; Wang, Y.; Chen, S.H.; Guan, W.Q. Volatile Oil Composition of Natural Spice, Origanum majorana L. Grown in China. J. Essent. Oil-Bear. Plants 2011, 14, 458–462. [Google Scholar] [CrossRef]
- Edris, A.E.; Shalaby, A.S.; Fadel, H.H. Effect of organic agriculture practices on the volatile aroma components of some essential oil plants growing in Egypt II: Sweet Marjoram (Origanum marjorana L.) essential oil. Flavour Fragr. J. 2003, 18, 345–351. [Google Scholar] [CrossRef]
- Baratta, M.T.; Dorman, H.J.D.; Deans, S.G.; Figueiredo, A.C.; Barroso, J.G.; Ruberto, G. Antimicrobial and antioxidant properties of some commercial essential oils. Flavour Fragr. J. 1998, 13, 235–244. [Google Scholar] [CrossRef]
- Raouafi, K.; Nefzi, H.; Esghaier, B.; Sadfi, N.; Abderrabba, M.; Sameh Ayadi, S. Biological activity and characterization of essential oil of areal part from Origanum majorana L.: First report of antifungal activity against Fusarium oxysporum and against his biofilm. J. Mater. Environ. Sci. 2021, 12, 746–756. [Google Scholar]
- Khadhri, A.; Bouali, I.; Aouadhi, C.; Lagel, M.C.; Masson, E.; Pizzi, A. Determination of phenolic compounds by MALDI-TOF and essential oil composition by GC-MS during three development stages of Origanum majorana L. Biomed. Chromatogr. 2019, 33, e4665. [Google Scholar] [CrossRef]
- Ragab, T.I.; El Gendy, A.N.G.; Saleh, I.A.; Esawy, M.A. Chemical composition and evaluation of antimicrobial activity of the Origanum majorana essential oil extracted by microwave-assisted extraction, conventional hydro-distillation and steam distillation. J. Essent. Oil-Bear. Plants 2019, 22, 563–573. [Google Scholar] [CrossRef]
- Partovi, R.; Talebi, F.; Sharifzadeh, A. Antimicrobial Efficacy and Chemical Properties of Caryophyllus aromaticus and Origanum majorana Essential Oils Against Foodborne Bacteria Alone and in Combination. Int. J. Enteric. Pathog. 2018, 6, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.S.; Padalia, R.C.; Chauhan, A.; Verma, R.K.; Rahman, L.; Singh, A. Changes in the Essential Oil Composition of Origanum majorana L. During Post Harvest Drying. J. Essent. Oil-Bear. Plants 2016, 19, 1547–1552. [Google Scholar] [CrossRef]
- Erdogan, A.; Ozkan, A. Investigatıon of Antioxıdative, Cytotoxic, Membrane-Damaging and Membrane-Protective Effects of The Essentıal Oil of Origanum majorana and its Oxygenated Monoterpene Component Linalool in Human-Derived Hep G2 Cell Line. Iran. J. Pharm. Sci. 2017, 16, 24–34. [Google Scholar]
- Salha, G.B.; Díaz, R.H.; Labidi, J.; Abderrabba, M. Deterpenation of Origanum majorana L. essential oil by reduced pressure steam distillation. Ind. Crops Prod. 2017, 109, 116–122. [Google Scholar] [CrossRef]
- Busatta, C.; Vidal, R.S.; Popiolski, A.S.; Mossi, A.J.; Dariva, C.; Rodrigues, M.R.; Corazza, F.C.; Corazza, M.L.; Vladimir Oliveira, J.; Cansian, R.L. Application of Origanum majorana L. essential oil as an antimicrobial agent in sausage. Food Microbiol. 2008, 25, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.; Bail, S.; Buchbauer, G.; Stoilova, I.; Krastanov, A.; Stoyanova, A.; Jirovetz, L. Chemical Composition, Olfactory Evaluation and Antioxidant Effects of the Essential oil of Origanum majorana L. from Albania. Nat. Prod. Commun. 2008, 3, 1934578X0800300704. [Google Scholar] [CrossRef] [Green Version]
- Ezzeddine, N.B.H.B.; Abdelkefi, M.M.; Aissa, R.B.; Chaabouni, M.M. Antibacterial screening of Origanum majorana L. oil from Tunisia. J. Essent. Oil Res. 2001, 13, 295–297. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Kirimer, N.; Tümen, G. Composition of the Essential Oil of Origanum majorana L. from Turkey. J. Essent. Oil Res. 1993, 5, 577–579. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J. Agric. Food Chem. 2000, 48, 2576–2581. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Mighri, H.; Aouni, M.; Gharsallah, N.; Kadri, A. Chemical composition and in vitro evaluation of antioxidant, antimicrobial, cytotoxicity and anti-acetylcholinesterase properties of Tunisian Origanum majorana L. essential oil. Microb. Pathog. 2016, 95, 86–94. [Google Scholar] [CrossRef]
- Chaves, R.D.S.B.; Martins, R.L.; Rodrigues, A.B.L.; Rabelo, É.M.; Farias, A.L.F.; Brandão, L.B.; Santos, L.L.; Galardo, A.K.R.; de Almeida, S.S.M.D.S. Evaluation of larvicidal potential against larvae of Aedes aegypti (Linnaeus, 1762) and of the antimicrobial activity of essential oil obtained from the leaves of Origanum majorana L. PLoS ONE 2020, 15, e0235740. [Google Scholar] [CrossRef]
- Amor, G.; Caputo, L.; La Storia, A.; De Feo, V.; Mauriello, G.; Fechtali, T. Chemical Composition and Antimicrobial Activity of Artemisia herba-alba and Origanum majorana Essential Oils from Morocco. Molecules 2019, 24, 4021. [Google Scholar] [CrossRef] [Green Version]
- Charai, M.; Mosaddak, M.; Faid, M. Chemical Composition and Antimicrobial Activities of Two Aromatic Plants: Origanum majorana L. and O. compactum Benth. J. Essent. Oil Res. 1996, 8, 657–664. [Google Scholar] [CrossRef]
- Makrane, H.; Aziz, M.; Berrabah, M.; Mekhfi, H.; Ziyyat, A.; Bnouham, M.; Legssyer, A.; Elombo, F.K.; Gressier, B.; Eto, B. Myorelaxant Activity of essential oil from Origanum majorana L. on rat and rabbit. J. Ethnopharmacol. 2019, 228, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Al-Fatimi, M. Volatile constituents, antimicrobial and antioxidant activities of the aerial parts of Origanum majorana L. from Yemen. J. Pharm. Res. Int. 2018, 23, 10. [Google Scholar] [CrossRef]
- Yang, Y.C.; Lee, S.H.; Clark, J.M.; Ahn, Y.J. Ovicidal and adulticidal activities of Origanum majorana essential oil constituents against insecticide-susceptible and pyrethroid/malathion-resistant Pediculus humanus capitis (Anoplura: Pediculidae). J. Agric. Food Chem. 2009, 57, 2282–2287. [Google Scholar] [CrossRef] [PubMed]
- Waller, S.B.; Madrid, I.M.; Ferraz, V.; Picoli, T.; Cleff, M.B.; de Faria, R.O.; Meireles, M.C.A.; de Mello, J.R.B. Cytotoxicity and anti-Sporothrix brasiliensis activity of the Origanum majorana Linn. Oil. Braz. J. Microbiol. 2016, 47, 896–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baj, T.; Baryluk, A.; Sieniawska, E. Application of mixture design for optimum antioxidant activity of mixtures of essential oils from Ocimum basilicum L., Origanum majorana L. and Rosmarinus officinalis L. Ind. Crops Prod. 2018, 115, 52–61. [Google Scholar] [CrossRef]
- Barazandeh, M.M. Essential Oil Composition of Origanum majorana L. from Iran. J. Essent. Oil Res. 2001, 13, 76–77. [Google Scholar] [CrossRef]
- Dantas, A.D.S.; Klein-Júnior, L.C.; Machado, M.S.; Guecheva, T.N.; Dos Santos, L.D.; Zanette, R.A.; de Mello, F.B.; Pêgas Henriques, J.A.; de Mello, J.R. Origanum majorana Essential Oil Lacks Mutagenic Activity in the Salmonella/Microsome and Micronucleus Assays. Sci. World J. 2016, 2016, 3694901. [Google Scholar] [CrossRef] [Green Version]
- Komaitis, M.E.; Ifanti-Papatragianni, N.; Melissari-Panagiotou, E. Composition of the essential oil of marjoram (Origanum majorana L.). Food Chem. 1992, 45, 117–118. [Google Scholar] [CrossRef]
- Arnold, N.; Bellomaria, B.; Valentini, G.; Arnold, H.J. Comparative Study of the Essential Oils from Three Species of Origanum Growing Wild in the Eastern Mediterranean Region. J. Essent. Oil Res. 1993, 5, 71–77. [Google Scholar] [CrossRef]
- Petrakis, E.A.; Kimbaris, A.C.; Perdikis, D.C.; Lykouressis, D.P.; Tarantilis, P.A.; Polissiou, M.G. Responses of Myzus persicae (Sulzer) to three Lamiaceae essential oils obtained by microwave-assisted and conventional hydrodistillation. Ind. Crops Prod. 2014, 62, 272–279. [Google Scholar] [CrossRef]
- Farsi, M.; Abdollahi, F.; Salehi, A.; Ghasemi, S. Growth Responses of Origanum majorana L. to Methyl Jasmonic Acid under Limited Irrigation Conditions. J. Essent. Oil-Bear. Plants 2019, 22, 455–468. [Google Scholar] [CrossRef]
- Bağci, Y.; Kan, Y.; Doğu, S.; Çelik, S.A. The Essential Oil Compositions of Origanum majorana L. Cultivated in Konya and Collected from Mersin-Turkey. Indian. J. Pharm. Educ. Res. 2017, 51, 463–469. [Google Scholar] [CrossRef]
- Novak, J.; Lukas, B.; Franz, C. Temperature Influences Thymol and Carvacrol Differentially in Origanum spp. (Lamiaceae). J. Essent. Oil Res. 2010, 22, 412–415. [Google Scholar] [CrossRef]
- Vaičiulytė, V.; Butkiene, R.; Ložienė, K. Effects of meteorological conditions and plant growth stage on the accumulation of carvacrol and its precursors in Thymus pulegioides. Phytochemistry 2016, 128, 20–26. [Google Scholar] [CrossRef]
- Ale Omrani Nejad, S.M.H.; Naghdi Badi, H.; Mehrafarin, A.; Abdossi, V.; Khalighi-Sigaroodi, F. The Impact of Macro Environmental Factors on Essential Oils of Oliveria decumbens Vent. from Different Regions of Iran. Jundishapur J. Nat. Pharm. Prod. 2018, 14, 59456. [Google Scholar] [CrossRef]
- Poulose, A.J.; Croteau, R. Biosynthesis of aromatic monoterpenes: Conversion of γ-terpinene to p-cymene and thymol in Thymus vulgaris L. Arch. Biochem. Biophys. 1978, 187, 307–314. [Google Scholar] [CrossRef]
- Fischer, N.; Nitz, S.; Drawert, F. Original flavour compounds and the essential oil composition of marjoram (Majorana hortensis moench). Flavour Fragr. J. 1987, 2, 55–61. [Google Scholar] [CrossRef]
- Ramos, S.; Rojas, L.B.; Lucena, M.E.; Meccia, G.; Usubillaga, A. Chemical Composition and Antibacterial Activity of Origanum majorana L. Essential Oil from the Venezuelan Andes. J. Essent. Oil Res. 2011, 23, 45–49. [Google Scholar] [CrossRef]
- Novak, J.; Langbehn, J.; Pank, F.; Franz, C.M. Essential oil compounds in a historical sample of marjoram (Origanum majorana L., Lamiaceae). Flavour Fragr. J. 2002, 17, 175–180. [Google Scholar] [CrossRef]
- Hallahan, T.W.; Croteau, R. Monoterpene biosynthesis: Demonstration of a geranyl pyrophosphate:sabinene hydrate cyclase in soluble enzyme preparations from sweet marjoram (Majorana hortensis). Arch. Biochem. Biophys. 1988, 264, 618–631. [Google Scholar] [CrossRef]
- Hallahan, T.W.; Croteau, R. Monoterpene biosynthesis: Mechanism and stereochemistry of the enzymatic cyclization of geranyl pyrophosphate to (+)-cis- and (+)-trans-sabinene hydrate. Arch. Biochem. Biophys. 1989, 269, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, N.E.; Kavallieratos, N.G.; Iliopoulos, V.; Evergetis, E.; Skourti, A.; Nika, E.P.; Haroutounian, S.A. Essential Oil Coating: Mediterranean Culinary Plants as Grain Protectants against Larvae and Adults of Tribolium castaneum and Trogoderma granarium. Insects 2022, 13, 165. [Google Scholar] [CrossRef]
- Circella, G.; Franz, C.; Novak, J.; Resch, H. Influence of day length and leaf insertion on the composition of marjoram essential oil. Flavour Fragr. J. 1995, 10, 371–374. [Google Scholar] [CrossRef]
- De Falco, E.; Mancini, E.; Roscigno, G.; Mignola, E.; Taglialatela-Scafati, O.; Senatore, F. Chemical composition and biological activity of essential oils of Origanum vulgare L. subsp. vulgare L. under different growth conditions. Molecules 2013, 18, 14948–14960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesolowska, A.; Jadczak, D.; Grzeszczuk, M. Influence of distillation time on the content and composition of essential oil isolated from lavender (Lavandula angustifolia Mill.). Herba Pol. 2010, 56. [Google Scholar]
- Turek, C.; Stintzing, F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide risk assessment of the active substance terpenoid blend QRD-460. EFSA J. 2014, 12, 3816. [Google Scholar] [CrossRef]
- Rozman, V.; Kalinovic, I.; Korunic, Z. Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects. J. Stored Prod. Res. 2007, 43, 349–355. [Google Scholar] [CrossRef]
- Saad, M.; El-Deeb, D.A.; Abdelgaleil, S. Insecticidal potential and repellent and biochemical effects of phenylpropenes and monoterpenes on the red flour beetle, Tribolium castaneum Herbst. Environ. Sci. Pollut. Res. 2019, 26, 6801–6810. [Google Scholar] [CrossRef]
- Yi, C.G.; Hieu, T.T.; Lee, S.H.; Choi, B.R.; Kwon, M.; Ahn, Y.J. Toxicity of Lavandula angustifolia oil constituents and spray formulations to insecticide-susceptible and pyrethroid-resistant Plutella xylostella and its endoparasitoid Cotesia glomerata. Pest Manag. Sci. 2016, 72, 1202–1210. [Google Scholar] [CrossRef]
- Yıldırım, E.; Emsen, B.; Kordali, S. Insecticidal effects of monoterpenes on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J. Appl. Bot. Food Qual. 2013, 86. [Google Scholar] [CrossRef]
- Seo, S.M.; Kim, J.; Lee, S.G.; Shin, C.H.; Shin, S.C.; Park, I.K. Fumigant antitermitic activity of plant essential oils and components from Ajowan (Trachyspermum ammi), Allspice (Pimenta dioica), caraway (Carum carvi), dill (Anethum graveolens), Geranium (Pelargonium graveolens), and Litsea (Litsea cubeba) oils against Japanese termite (Reticulitermes speratus Kolbe). J. Agric. Food Chem. 2009, 57, 6596–6602. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.H.; Park, J.Y.; Shin, S.C.; Kim, J.; Park, I.K. Nematicidal activity of medicinal plant essential oils against the pinewood nematode (Bursaphelenchus xylophilus). Appl. Entomol. Zool. 2007, 42, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Weidenhamer, J.D.; Macias, F.A.; Fischer, N.H.; Williamson, G.B. Just how insoluble are monoterpenes? J. Chem. Ecol. 1993, 19, 1799–1807. [Google Scholar] [CrossRef]
Species Examined | Family/Order | Dose Used | Effect | Reference |
---|---|---|---|---|
Corcyra cephalonica | Pyralidae/Lepidoptera | 11.31 μL/L air (adult) 49.83 μL/L air (larvae) | Fumigant toxicity | [20] |
Spodoptera littoralis Boisduval | Noctuidae/Lepidoptera | 2.48 μg 3.14 g/L 1.86 g/L 2.27 g/L | Insecticidal activity | [26] |
Aphis fabae L. | Aphididae/Hemiptera | |||
Tetranychus urticae Koch | Tetranychidae/Tetranychidae | 15 μg/cm2 | Fumigant activity | [28] |
Ephestia kuehniella Zeller | Pyralidae/Lepidoptera | 200 μg/L air 200 μg/L air | Fumigant activity | [29] |
Plodia interpunctella (Hübner) | Pyralidae/Lepidoptera | |||
Spodoptera littoralis | Noctuidae/Lepidoptera | 19.6 mL/m3 LD50 | Insecticidal activity | [30] |
Tribolium castaneum | Tenebrionidae/Coleoptera | 100 ppm | Repellent activity | [31] |
Sitophilus zeamais Motschulsky | Curculionidae/Coleoptera | 0.18 mg/cm2 | Insecticidal activity | [32] |
Myzus persicae (Sulzer) | Aphididae/Hemiptera | 500 μL/L | Longevity and fecundity | [71] |
Tribolium. castaneum (Herbst) Trogoderma granarium (Everts) | Tenebrionidae/Coleoptera Dermestidae/Coleoptera | 1000 ppm | Insecticidal activity | [83] |
Species Examined Method of Exposure | Compound Name | Dose Requested for the Activity and % Effect after the Application (in Parenthesis) | Reference | |
---|---|---|---|---|
Spodoptera littoralis Boisduval Topical application/Residual film | terpinen-4-ol | 16.20 μg/larva | 32.94 g/L | [26] |
γ-terpinene | 11.86 μg/larva | 23.94 g/L | ||
RapidAphis fabae L. Rapid dipping/Residual film | terpinen-4-ol | 14.86 g/L | 20.77 g/L | |
γ-terpinene | 12.24 g/L | 18.03 g/L | ||
Sitophilus oryzae filter paper disc | camphene | 6.5 mg/L (10%) | [24] | |
α-terpinene | 25 mg/L (52%) | |||
sabinene hydrate | 6.5 mg/L (26%) | |||
terpinolene | 25 mg/L (98%) | |||
linalool | 6.5 mg/L (74%) | |||
camphor | 6.5 mg/L (22%) | |||
α-terpineol | 1.5 mg/L (18%) | |||
terpinen-4-ol | 3 mg/L (88%) | |||
Rhyzopertha dominica filter paper disc | 1,8-cineole | 0.1 μL/720 mL (97.5%) | [89] | |
linalyl acetate | 0.1 μL/720 mL (90%) | |||
carvacrol | 0.1 μL/720 mL (82.5%) | |||
camphor | 0.1 μL/720 mL (100%) | |||
linalool | 0.1 μL/720 mL (100%) | |||
bornyl acetate | 0.1 μL/720 mL (92.5%) | |||
borneol | 0.1 μL/720 mL (92.5%) | |||
thymol | 0.1 μL/720 mL (77.5%) | |||
linalyl acetate | 0.1 μL/720 mL (0.00%) | |||
Tribolium castaneum filter paper disc | 1,8-cineole | 0.1 μL/720 mL (0.00%) | ||
carvacrol | 0.1 μL/720 mL (5.0%) | |||
camphor | 0.1 μL/720 mL (0.00%) | |||
linalool | 0.1 μL/720 mL (0.00%) | |||
bornyl acetate | 0.1 μL/720 mL (0.00%) | |||
borneol | 0.1 μL/720 mL (0.00%) | |||
thymol | 0.1 μL/720 mL (0.00%) | |||
Sitophilus oryzae filter paper disc | linalyl acetate | 0.1 μL/720 mL (100%) | ||
1,8-cineole | 0.1 μL/720 mL (100%) | |||
carvacrol | 0.1 μL/720 mL (85%) | |||
camphor | 0.1 μL/720 mL (90%) | |||
linalool | 0.1 μL/720 mL (90%) | |||
bornyl acetate | 0.1 μL/720 mL (97.5%) | |||
borneol | 0.1 μL/720 mL (100%) | |||
thymol | 0.1 μL/720 mL (100%) | |||
Tribolium castaneum surface-film bioassay (contact toxicity) | terpinen-4-ol | 0.21 mg/cm2 | [90] | |
α-terpinene | >0.50 mg/cm2 | |||
p-cymene | >0.50 mg/cm2 | |||
Tribolium castaneum surface-film bioassay (fumigant toxicity) | terpinen-4-ol | 20.47 mg/cm2 | ||
α-terpinene | 23.70 mg/cm2 | |||
p-cymene | 27.01 mg/cm2 | |||
Tribolium castaneum area preference method (repellent activity) | terpinen-4-ol | 0.001 mg/cm2 (23.3% RI 1, 2 h) | ||
α-terpinene | 0.001 mg/cm2 (80.0%% RI 1, 2 h) | |||
p-cymene | 0.001 mg/cm2 (66.70%% RI 1, 2 h) | |||
Plutella xylostella vapor-phase mortality bioassay (fumigant toxicity) | JJ-PX P. xylostella larvae | KS-PX P. xylostella larvae | [91] | |
linalool | 0.021 mg cm−3 | 0.016 mg cm−3 | ||
linalool oxide | 0.024 mg cm−3 | 0.016 mg cm−3 | ||
terpinen-4-ol | 0.020 mg cm−3 | 0.018 mg cm−3 | ||
(1S)-(−)-camphor | 0.022 mg cm−3 | 0.019 mg cm−3 | ||
(1R)-(+)-camphor | 0.029 mg cm−3 | 0.024 mg cm−3 | ||
1.8-cineole | 0.029 mg cm−3 | 0.037 mg cm−3 | ||
p-cymene | 0.037 mg cm−3 | 0.038 mg cm−3 | ||
(1R)-(+)-α-pinene | 0.047 mg cm−3 | 0.045 mg cm−3 | ||
(1S)-(−)-α-pinene | 0.040 mg cm−3 | 0.052 mg cm−3 | ||
(1R)-(+)-β-Pinene | 0.058 mg cm−3 | 0.046 mg cm−3 | ||
(1S)-(−)-β-Pinene | 0.063 mg cm−3 | 0.057 mg cm−3 | ||
camphene | 0.060 mg cm−3 | 0.074 mg cm−3 | ||
α-Terpineol | 0.069 mg cm−3 | 0.076 mg cm−3 | ||
(R)-(−)-α-Phelladrene | 0.109 mg cm−3 | 0.087 mg cm−3 | ||
(1S)-(−)-Borneol | 0.140 mg cm−3 | 0.121 mg cm−3 | ||
(1R)-(+)-Camphor | 0.029 mg cm−3 | 0.024 mg cm−3 | ||
Cotesia glomerata vapor-phase mortality bioassay (fumigant toxicity) | (1S)-(−)-Camphor | 0.0016 mg cm−3 | ||
terpinen-4-ol | 0.0018 mg cm−3 | |||
1.8-cineole | 0.0039 mg cm−3 | |||
bornyl acetate | 0.0064 mg cm−3 | |||
linalool | 0.0075 mg cm−3 | |||
α-terpineol | 0.0078 mg cm−3 | |||
(1S)-(−)-β-pinene | 0.0083 mg cm−3 | |||
α-Terpinyl acetate | 0.0084 mg cm−3 | |||
(1R)-(+)-β-Pinene | 0.0089 mg cm−3 | |||
(1R)-(+)-α-Pinene | 0.018 mg cm−3 | |||
nerol | 0.0093 mg cm−3 | |||
neryl acetate | 0.012 mg cm−3 | |||
linalyl acetate | 0.014 mg cm−3 | |||
camphene | 0.015 mg cm−3 | |||
(1S)-(−)-α-Pinene | 0.015 mg cm−3 | |||
geranyl acetate | 0.016 mg cm−3 | |||
limonene | 0.016 mg cm−3 | |||
γ-Terpinene | 0.017 mg cm−3 | |||
β-Caryophyllene | 0.018 mg cm−3 | |||
myrcene | 0.019 mg cm−3 | |||
p-cymene | 0.021 mg cm−3 | |||
(R)-(−)-α-phelladrene | 0.025 mg cm−3 | |||
limonene | 0.027 mg cm−3 | |||
α-Terpinene | 0.026 mg cm−3 | |||
geraniol | 0.032 mg cm−3 | |||
Cotesia glomerata leaf-dip bioassay (residual toxicity) | JJ-PX P. xylostella larvae | KS-PX P. xylostella larvae | ||
terpinen-4-ol | 0.0538 mg cm−2 | 0.0405 mg cm−2 | ||
linalool | 0.0582 mg cm−2 | 0.0489 mg cm−2 | ||
linalool oxide | 0.0654 mg cm−2 | 0.0521 mg cm−2 | ||
(1S)-(−)-camphor | 0.0816 mg cm−2 | 0.0737 mg cm−2 | ||
p-cymene | 0.1586 mg cm−2 | 0.1388 mg cm−2 | ||
1,8-cineole | 0.1726 mg cm−2 | 0.1552 mg cm−2 | ||
(1R)-(+)-α-pinene | 0.4996 mg cm−2 | 0.4486 mg cm−2 | ||
Tribolium castaneum (Herbst) (area preference method) | myrcene | 2 × 10−5 μL/cm2 (8%) | [23] | |
carvacrol | 2 × 10−5 μL/cm2 (8%) | |||
geraniol | 2 × 10−5 μL/cm2 (6%) | |||
geranyl acetate | 2 × 10−5 μL/cm2 (5%) | |||
nerol | 2 × 10−5 μL/cm2 (8%) | |||
p-cymene | 2 × 10−5 μL/cm2 (−6%) | |||
R(-) carvone | 2 × 10−5 μL/cm2 (21%) | |||
S(+) carvone | 2 × 10−5 μL/cm2 (−10%) | |||
Sitophilus granarius (L.) (petri dishes) | camphene | 10 μg/petri dish (22.2%) | [25] | |
3-carene | 8.7 μg/petri dish (88.9%) | |||
limonene | 8.4 μg/petri dish (91.9%) | |||
myrcene | 7.9 μg/petri dish (79.8%) | |||
γ-terpinene | 8.5 μg/petri dish (80.8%) | |||
borneol | 10 μg/petri dish (54.5%) | |||
linalool | 8.6 μg/petri dish (100%) | |||
thymol | 10 μg/petri dish (73.7%) | |||
carvacrol | 9.8 μg/petri dish (100%) | |||
nerol | 8.8 μg/petri dish (100%) | |||
terpinen-4-ol | 10 μg/petri dish (100%) | |||
α-terpineol | 10 μg/petri dish (62.6%) | |||
1.8-cineole | 9.2 μg/petri dish (100%) | |||
camphor | 10 μg/petri dish (49.5%) | |||
carvone | 9.6 μg/petri dish (100%) | |||
dihydrocarvone | 9.3 μg/petri dish (100%) | |||
Sitophilus zeamais Motschulsky (petri dishes) | camphene | 10 μg (4.04%) | [92] | |
3-carene | 10 μg (47.47%) | |||
limonene | 10 μg (6.06%) | |||
myrcene | 10 μg (4.04%) | |||
α-pinene | 10 μg (4.04%) | |||
β-pinene | 10 μg (3.03%) | |||
linalool | 10 μg (76.77%) | |||
nerol | 10 μg (3.03%) | |||
terpinen-4-ol | 10 μg (96.97%) | |||
α-terpineol | 10 μg (45.45%) | |||
1.8-cineole | 10 μg (89.90%) | |||
camphor | 10 μg (75.76%) | |||
carvone | 10 μg (100%) | |||
dihydrocarvone | 10 μg (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakouri, E.; Daferera, D.; Kanakis, C.; Revelou, P.-K.; Kaparakou, E.H.; Dervisoglou, S.; Perdikis, D.; Tarantilis, P.A. Origanum majorana Essential Oil—A Review of Its Chemical Profile and Pesticide Activity. Life 2022, 12, 1982. https://doi.org/10.3390/life12121982
Kakouri E, Daferera D, Kanakis C, Revelou P-K, Kaparakou EH, Dervisoglou S, Perdikis D, Tarantilis PA. Origanum majorana Essential Oil—A Review of Its Chemical Profile and Pesticide Activity. Life. 2022; 12(12):1982. https://doi.org/10.3390/life12121982
Chicago/Turabian StyleKakouri, Eleni, Dimitra Daferera, Charalabos Kanakis, Panagiota-Kyriaki Revelou, Eleftheria H. Kaparakou, Sofia Dervisoglou, Dionysios Perdikis, and Petros A. Tarantilis. 2022. "Origanum majorana Essential Oil—A Review of Its Chemical Profile and Pesticide Activity" Life 12, no. 12: 1982. https://doi.org/10.3390/life12121982
APA StyleKakouri, E., Daferera, D., Kanakis, C., Revelou, P.-K., Kaparakou, E. H., Dervisoglou, S., Perdikis, D., & Tarantilis, P. A. (2022). Origanum majorana Essential Oil—A Review of Its Chemical Profile and Pesticide Activity. Life, 12(12), 1982. https://doi.org/10.3390/life12121982