Temporal Hierarchy and Context-Dependence of Quorum Sensing Signal in Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Materials and Methods
3. Results
General Growth Characteristics on BIOLOG Gen III
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Name | Well | Metabolic Activity | Planktonic Growth | Both | Biofilm | Ratio bf/Cell |
---|---|---|---|---|---|---|
Negative Control | A1 | |||||
D-Raffinose | B1 | |||||
Glucose | C1 | x | x | x | x | 1.87 |
D-Sorbitol | D1 | |||||
Gelatin | E1 | x | x | x | x | 2.49 |
Pectin | F1 | x | ||||
p-Hydroxy-Phenylacetic Acid | G1 | x | x | x | x | 1.41 |
Tween 40 | H1 | x | x | x | x | 1.45 |
Dextrin | A2 | |||||
Lactose | B2 | x | ||||
D-Mannose | C2 | x | ||||
D-Mannitol | D2 | x | x | x | x | 5.34 |
Glycyl-L-Proline | E2 | x | x | x | x | 5.27 |
D-Galacturonic Acid | F2 | x | ||||
Methyl Pyruvate | G2 | x | x | x | x | 5.04 |
gamma-Amino-Butyric Acid | H2 | x | x | x | x | 2.43 |
D-Maltose | A3 | |||||
D-Melibiose | B3 | |||||
D-Fructose | C3 | x | x | |||
D-Arabino | D3 | x | x | |||
L-Alanine | E3 | x | x | x | x | 6.59 |
L-Galactonic Acid Lactone | F3 | |||||
D-Lactic Acid Methyl Ester | G3 | |||||
alpha-Hydroxy-Butyric Acid | H3 | x | ||||
D-Trehalose | A4 | x | x | x | x | 2.10 |
alpha-Methyl-D-Glucoside | B4 | |||||
D-Galactose | C4 | |||||
myo-Inositol | D4 | |||||
L-Arginine | E4 | x | x | x | x | 5.75 |
D-Gluconic Acid | F4 | x | x | x | x | 1.90 |
L-Lactic Acid | G4 | x | x | x | x | 2.45 |
beta-Hydroxy-D,L-butyric Acid | H4 | x | x | x | x | 3.58 |
D-Cellobiose | A5 | |||||
D-Salicin | B5 | |||||
3-Methyl Glucose | C5 | |||||
Glycerol | D5 | x | x | |||
L-Aspartic Acid | E5 | x | x | x | x | 1.39 |
D-Glucuronic Acid | F5 | x | ||||
Citric Acid | G5 | x | x | x | x | 0.26 |
alpha-Keto-Butyric Acid | H5 | x | ||||
Gentiobiose | A6 | |||||
N-Acetyl-D-Glucosamine | B6 | x | x | x | x | 1.20 |
D-Fucose | C6 | x | ||||
D-Glucose-6-PO4 | D6 | |||||
L-Glutamic Acid | E6 | x | x | x | x | 1.62 |
Glucuronamide | F6 | x | ||||
alpha-Keto-Glutaric Acid | G6 | x | x | x | x | 1.80 |
Acetoacetic Acid | H6 | |||||
Sucrose | A7 | |||||
N-Acetyl-D-Mannosamine | B7 | |||||
L-Fucose | C7 | |||||
D-Fructose-6-PO4 | D7 | x | x | |||
L-Histidine | E7 | x | x | x | x | 3.95 |
Mucic Acid | F7 | |||||
D-Malic Acid | G7 | x | ||||
Propionic Acid | H7 | x | x | x | x | 2.43 |
D-Turanose | A8 | |||||
N-Acetyl-D-Galactosamine | B8 | |||||
L-Rhamnose | C8 | |||||
D-Aspartic Acid | D8 | |||||
L-Pyroglutamic Acid | E8 | x | x | |||
Quinic Acid | F8 | x | ||||
L-Malic Acid | G8 | x | x | x | x | 0.53 |
Acetic Acid | H8 | x | x | x | x | 2.73 |
Stachyose | A9 | |||||
N-Acetyl Neuraminic Acid | B9 | |||||
Inosine | C9 | x | x | |||
D-Serine_single | D9 | |||||
L-Serine | E9 | x | ||||
D-Saccharic Acid | F9 | |||||
Bromo-Succinic Acid | G9 | x | x | x | x | 1.58 |
Formic Acid | H9 | x | x | x | x | 0.96 |
Positive Control | A10 | x | x | x | x | 0.85 |
1% NaCl | B10 | x | x | x | x | 0.82 |
1% Sodium Lactate | C10 | x | x | x | x | 0.46 |
Troleandomycin | D10 | x | x | x | x | 1.53 |
Lincomycin | E10 | x | x | x | x | 0.55 |
Vancomycin | F10 | x | x | x | x | 0.67 |
Nalidixic Acid | G10 | x | x | x | x | 0.81 |
Aztreonam | H10 | |||||
pH 6 | A11 | x | x | x | x | 0.94 |
4% NaCl | B11 | x | x | x | x | 0.38 |
Fusidic Acid | C11 | x | x | x | x | 1.03 |
Rifamycin SV | D11 | x | x | x | x | 0.87 |
Guanidine HCl | E11 | x | x | x | x | 0.70 |
Tetrazolium Violet | F11 | |||||
Lithium Chloride | G11 | |||||
Sodium Butyrate | H11 | x | ||||
pH 5 | A12 | x | x | x | x | 1.70 |
8% NaCl | B12 | x | ||||
D-Serine | C12 | x | x | x | x | 1.54 |
Minocycline | D12 | x | x | x | x | 1.28 |
Niaproof 4 | E12 | x | x | x | x | 1.78 |
Tetrazolium Blue | F12 | |||||
Potassium Tellurite | G12 | x | x | x | x | 0.77 |
Sodium Bromate | H12 | |||||
Total | 52 | 43 | 42 | 57 |
References
- Rahme, L.G.; Stevens, E.J.; Wolfort, S.F.; Shao, J.; Tompkins, R.G.; Ausubel, F.M.; Galaktionov, K.; Lee, A.; Eckstein, J.; Draetta, G.; et al. Common Virulence Factors for Bacterial Pathogenicity in Plants and Animals. Science 1995, 268, 1899–1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, K.H.; Everett, J.; Trivedi, U.; Rumbaugh, K.P.; Whiteley, M. Requirements for Pseudomonas aeruginosa Acute Burn and Chronic Surgical Wound Infection. PLoS Genet. 2014, 10, e1004518. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, D.; Kollef, M. The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs 2021, 81, 2117–2131. [Google Scholar] [CrossRef] [PubMed]
- Folkesson, A.; Jelsbak, L.; Yang, L.; Johansen, H.K.; Ciofu, O.; Høiby, N.; Molin, S. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: An evolutionary perspective. Nat. Rev. Microbiol. 2012, 10, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.D.; Davies, J.C. Basic science for the chest physician: Pseudomonas aeruginosa and the cystic fibrosis airway. Thorax 2012, 67, 465–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolan, S.K. Current Knowledge and Future Directions in Developing Strategies to Combat Pseudomonas aeruginosa Infection. J. Mol. Biol. 2020, 432, 5509–5528. [Google Scholar] [CrossRef]
- Hogardt, M.; Heesemann, J. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. In Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Behrends, V.; Bell, T.J.; Liebeke, M.; Cordes-Blauert, A.; Ashraf, S.N.; Nair, C.; Zlosnik, J.; Williams, H.; Bundy, J.G. Metabolite Profiling to Characterize Disease-Related Bacteria: Gluconate Excretion by Pseudomonas Aeruginosa Mutants and Clinical Isolates from Cystic Fibrosis Patients. J. Biol. Chem. 2013, 288, 15098–15109. [Google Scholar] [CrossRef] [Green Version]
- Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Hauser, A.R. Pseudomonas aeruginosa: So many virulence factors, so little time*. Crit. Care Med. 2011, 39, 2193–2194. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Martín, I.; Sainz-Mejías, M.; McClean, S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int. J. Mol. Sci. 2021, 22, 3128. [Google Scholar] [CrossRef]
- Nolan, C.; Behrends, V. Sub-Inhibitory Antibiotic Exposure and Virulence in Pseudomonas aeruginosa. Antibiotics 2021, 10, 1393. [Google Scholar] [CrossRef] [PubMed]
- Filloux, A. Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function. Front. Microbiol. 2011, 2, 155. [Google Scholar] [CrossRef] [Green Version]
- Sana, T.G.; Berni, B.; Bleves, S. The T6SSs of Pseudomonas aeruginosa Strain PAO1 and Their Effectors: Beyond Bacterial-Cell Targeting. Front. Cell Infect. Microbiol. 2016, 6, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sana, T.; Baumann, C.; Merdes, A.; Soscia, C.; Rattei, T.; Hachani, A.; Jones, C.; Bennett, K.L.; Filloux, A.; Superti-Furga, G.; et al. Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network. mBio 2015, 6, e00712-15. [Google Scholar] [CrossRef] [Green Version]
- Jolly, A.L.; Takawira, D.; Oke, O.O.; Whiteside, S.A.; Chang, S.W.; Wen, E.R.; Quach, K.; Evans, D.J.; Fleiszig, S.M.J. Pseudomonas aeruginosa-Induced Bleb-Niche Formation in Epithelial Cells Is Independent of Actinomyosin Contraction and Enhanced by Loss of Cystic Fibrosis Transmembrane-Conductance Regulator Osmoregulatory Function. mBio 2015, 6, e02533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Lee, K.-M.; Go, J.; Ryu, J.-C.; Ryu, J.-H.; Yoon, S.S. The ferrichrome receptor A as a new target forPseudomonas aeruginosavirulence attenuation. FEMS Microbiol. Lett. 2016, 363, fnw104. [Google Scholar] [CrossRef] [Green Version]
- Jo, J.; Price-Whelan, A.; Cornell, W.C.; Dietrich, L.E.P. Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14. J. Bacteriol. 2020, 202, e00700-19. [Google Scholar] [CrossRef]
- Williams, H.D.; Zlosnik, J.E.A.; Ryall, B. Oxygen, Cyanide and Energy Generation in the Cystic Fibrosis Pathogen Pseudomonas Aeruginosa. Adv. Microb. Physiol. 2006, 52, 1–71. [Google Scholar]
- Williams, P.; Winzer, K.; Chan, W.; Camara, M. Look who’s talking: Communication and quorum sensing in the bacterial world. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1119–1134. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015, 6, 26. [Google Scholar] [CrossRef]
- Williams, P.; Cámara, M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: A tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol. 2009, 12, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Dubern, J.-F.; Diggle, S.P. Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol. BioSyst. 2008, 4, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Heeb, S.; Fletcher, M.P.; Chhabra, S.R.; Diggle, S.P.; Williams, P.; Cámara, M. Quinolones: From antibiotics to autoinducers. FEMS Microbiol. Rev. 2011, 35, 247–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, M.; Greenberg, E.P. A network of networks: Quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 2006, 296, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Pena, R.T.; Blasco, L.; Ambroa, A.; González-Pedrajo, B.; Fernández-García, L.; López, M.; Bleriot, I.; Bou, G.; García-Contreras, R.; Wood, T.K.; et al. Relationship Between Quorum Sensing and Secretion Systems. Front. Microbiol. 2019, 10, 1100. [Google Scholar] [CrossRef] [Green Version]
- Haney, E.; Trimble, M.; Cheng, J.; Vallé, Q.; Hancock, R. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Biomolecules 2018, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Sauer, K.; Cullen, M.C.; Rickard, A.H.; Zeef, L.A.H.; Davies, D.G.; Gilbert, P. Characterization of Nutrient-Induced Dispersion in Pseudomonas aeruginosa PAO1 Biofilm. J. Bacteriol. 2004, 186, 7312–7326. [Google Scholar] [CrossRef] [Green Version]
- Linares, J.F.; Moreno, R.; Fajardo, A.; Martínez-Solano, L.; Escalante, R.; Rojo, F.; Martínez, J.L. The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Environ. Microbiol. 2010, 12, 3196–3212. [Google Scholar] [CrossRef]
- Huang, J.; Sonnleitner, E.; Ren, B.; Xu, Y.; Haas, D. Catabolite Repression Control of Pyocyanin Biosynthesis at an Intersection of Primary and Secondary Metabolism in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2012, 78, 5016–5020. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Chen, S.; Sysoeva, T.; You, L. Universal antibiotic tolerance arising from antibiotic-triggered accumulation of pyocyanin in Pseudomonas aeruginosa. PLOS Biol. 2019, 17, e3000573. [Google Scholar] [CrossRef] [Green Version]
- Peng, B.; Su, Y.-B.; Li, H.; Han, Y.; Guo, C.; Tian, Y.-M.; Peng, X.-X. Exogenous Alanine and/or Glucose plus Kanamycin Kills Antibiotic-Resistant Bacteria. Cell Metab. 2015, 21, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, P.; Collins, J.J. Boosting Bacterial Metabolism to Combat Antibiotic Resistance. Cell Metab. 2015, 21, 154–155. [Google Scholar] [CrossRef] [Green Version]
- Lopatkin, A.J.; Stokes, J.M.; Zheng, E.J.; Yang, J.H.; Takahashi, M.; You, L.; Collins, J.J. Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate. Nat. Microbiol. 2019, 4, 2109–2117. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, G.A. Microtiter Dish Biofilm Formation Assay. J. Vis. Exp. 2011, 47, e2437. [Google Scholar] [CrossRef] [PubMed]
- Ortori, C.A.; Dubern, J.-F.; Chhabra, S.R.; Cámara, M.; Hardie, K.; Williams, P.; Barrett, D.A. Simultaneous quantitative profiling of N-acyl-l-homoserine lactone and 2-alkyl-4(1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS. Anal. Bioanal. Chem. 2010, 399, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Behrends, V.; Tredwell, G.D.; Bundy, J.G. A software complement to AMDIS for processing GC-MS metabolomic data. Anal. Biochem. 2011, 415, 206–208. [Google Scholar] [CrossRef]
- Klausen, M.; Aaes-Jørgensen, A.; Molin, S.; Tolker-Nielsen, T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol. 2003, 50, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P.K.; Zhang, L.; Mah, T.-F. Loss of the Two-Component System TctD-TctE in Pseudomonas aeruginosa Affects Biofilm Formation and Aminoglycoside Susceptibility in Response to Citric Acid. mSphere 2019, 4, e00102-19. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Yang, J.; Liu, L.; Li, B.; Yuan, H.; Liu, W. Sodium Lactate Negatively Regulates Shewanella putrefaciens CN32 Biofilm Formation via a Three-Component Regulatory System (LrbS-LrbA-LrbR). Appl. Environ. Microbiol. 2017, 83, e00712-17. [Google Scholar] [CrossRef] [Green Version]
- Novović, K.; Malešević, M.; Dinić, M.; Gardijan, L.; Kojić, M.; Jovčić, B. RclS Sensor Kinase Modulates Virulence of Pseudo-monas Capeferrum. Int. J. Mol. Sci. 2022, 23, 8232. [Google Scholar] [CrossRef]
- Kulasekara, H.D.; Ventre, I.; Kulasekara, B.R.; Lazdunski, A.; Filloux, A.; Lory, S. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol. Microbiol. 2004, 55, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.G.; Moreau-Marquis, S.; Stanton, B.A.; O’Toole, G.A. In Vitro Analysis of Tobramycin-Treated Pseudomonas aeruginosa Biofilms on Cystic Fibrosis-Derived Airway Epithelial Cells. Infect. Immun. 2008, 76, 1423–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schobert, M.; Jahn, D. Anaerobic physiology of Pseudomonas aeruginosa in the cystic fibrosis lung. Int. J. Med. Microbiol. 2010, 300, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Sabra, W.; Lünsdorf, H.; Zeng, A.-P. Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. Microbiology 2003, 149, 2789–2795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyofuku, M.; Nomura, N.; Fujii, T.; Takaya, N.; Maseda, H.; Sawada, I.; Nakajima, T.; Uchiyama, H. Quorum Sensing Regulates Denitrification in Pseudomonas aeruginosa PAO1. J. Bacteriol. 2007, 189, 4969–4972. [Google Scholar] [CrossRef] [Green Version]
- Gödeke, J.; Pustelny, C.; Häussler, S. Recycling of Peptidyl-tRNAs by Peptidyl-tRNA Hydrolase Counteracts Azithromycin-Mediated Effects on Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2013, 57, 1617–1624. [Google Scholar] [CrossRef] [Green Version]
- Kolodkin-Gal, I.; Romero, D.; Cao, S.; Clardy, J.; Kolter, R.; Losick, R. D-Amino Acids Trigger Biofilm Disassembly. Science 2010, 328, 627–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, W.T.K.; Frye, M.; Gagnon, P.; Vogel, J.P.; Chole, R. D-amino acids do not inhibit Pseudomonas aeruginosa biofilm formation. Laryngoscope 2017, 2, 4–9. [Google Scholar] [CrossRef]
- Bredenbruch, F.; Geffers, R.; Nimtz, M.; Buer, J.; Haussler, S. The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ. Microbiol. 2006, 8, 1318–1329. [Google Scholar] [CrossRef]
- Tettmann, B.; Niewerth, C.; Kirschhöfer, F.; Neidig, A.; Dötsch, A.; Brenner-Weiss, G.; Fetzner, S.; Overhage, J. En-zyme-Mediated Quenching of the Pseudomonas Quinolone Signal (PQS) Promotes Biofilm Formation of Pseudomonas Aeruginosa by Increasing Iron Availability. Front. Microbiol. 2016, 7, 1978. [Google Scholar] [CrossRef]
- Kragh, K.N.; Hutchison, J.B.; Melaugh, G.; Rodesney, C.; Roberts, A.E.L.; Irie, Y.; Jensen, P.; Diggle, S.P.; Allen, R.J.; Gordon, V.; et al. Role of Multicellular Aggregates in Biofilm Formation. mBio 2016, 7, e00237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siryaporn, A.; Kuchma, S.L.; O’Toole, G.A.; Gitai, Z. Surface attachment induces Pseudomonas aeruginosa virulence. Proc. Natl. Acad. Sci. USA 2014, 111, 16860–16865. [Google Scholar] [CrossRef] [Green Version]
- Perinbam, K.; Chacko, J.V.; Kannan, A.; Digman, M.A.; Siryaporn, A. A Shift in Central Metabolism Accompanies Virulence Activation in Pseudomonas aeruginosa. mBio 2020, 11, e02730-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, S.K.; Vrla, G.D.; Fröhlich, K.; Gitai, Z. Surface association sensitizes Pseudomonas aeruginosa to quorum sensing. Nat. Commun. 2019, 10, 4118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrla, G.D.; Esposito, M.; Zhang, C.; Kang, Y.; Seyedsayamdost, M.R.; Gitai, Z. Cytotoxic alkyl-quinolones mediate surface-induced virulence in Pseudomonas aeruginosa. PLOS Pathog. 2020, 16, e1008867. [Google Scholar] [CrossRef] [PubMed]
- Laventie, B.-J.; Sangermani, M.; Estermann, F.; Manfredi, P.; Planes, R.; Hug, I.; Jaeger, T.; Meunier, E.; Broz, P.; Jenal, U. A Surface-Induced Asymmetric Program Promotes Tissue Colonization by Pseudomonas aeruginosa. Cell Host Microbe 2019, 25, 140–152. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Y.; Sugiman-Marangos, S.; Harvey, H.; Bell, S.D.; Charlton, C.L.; Junop, M.S.; Burrows, L.L. Pseudomonas aeruginosa Minor Pilins Prime Type IVa Pilus Assembly and Promote Surface Display of the PilY1 Adhesin. J. Biol. Chem. 2015, 290, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Persat, A.; Inclan, Y.F.; Engel, J.N.; Stone, H.A.; Gitai, Z. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2015, 112, 7563–7568. [Google Scholar] [CrossRef] [Green Version]
- Valentini, M.; Gonzalez, D.; Mavridou, D.A.; Filloux, A. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Curr. Opin. Microbiol. 2018, 41, 15–20. [Google Scholar] [CrossRef]
- Häussler, S.; Becker, T. The Pseudomonas Quinolone Signal (PQS) Balances Life and Death in Pseudomonas aeruginosa Populations. PLOS Pathog. 2008, 4, e1000166. [Google Scholar] [CrossRef]
- Abdalla, M.Y.; Hoke, T.; Seravalli, J.; Switzer, B.L.; Bavitz, M.; Fliege, J.D.; Murphy, P.J.; Britigan, B.E. Pseudomonas Quinolone Signal Induces Oxidative Stress and Inhibits Heme Oxygenase-1 Expression in Lung Epithelial Cells. Infect. Immun. 2017, 85, e00176-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pezzoni, M.; Meichtry, M.; Pizarro, R.A.; Costa, C.S. Role of the Pseudomonas quinolone signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation. J. Photochem. Photobiol. B Biol. 2015, 142, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Bru, J.-L.; Rawson, B.; Trinh, C.; Whiteson, K.; Høyland-Kroghsbo, N.M.; Siryaporn, A. PQS Produced by the Pseudomonas aeruginosa Stress Response Repels Swarms Away from Bacteriophage and Antibiotics. J. Bacteriol. 2019, 201, e00383-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, G.D.; Hung, D.T.; Helmann, J.D. How antibiotics kill bacteria: New models needed? Nat. Med. 2013, 19, 544–545. [Google Scholar] [CrossRef] [PubMed]
Activity | Cell Number | 3oC12-HSL | C4-HSL | PQS | Pyocyanin | ||
---|---|---|---|---|---|---|---|
Glucose | C1 | 0.08 | 0.01 | 0.50 | −0.73 | −0.58 | −2.69 |
Gelatin | E1 | 2.17 | 0.72 | 0.10 | −0.55 | −0.13 | -1.67 |
p-Hydroxy-Phenylacetic Acid | G1 | −1.27 | 1.08 | −0.42 | −1.43 | −1.36 | −3.74 |
Tween 40 | H1 | −0.78 | 0.03 | 0.61 | −0.73 | −0.83 | −4.11 |
D-Mannitol | D2 | 0.13 | −0.02 | −1.01 | −2.03 | −1.83 | −2.36 |
Glycyl-L-Proline | E2 | 0.33 | 1.53 | 0.14 | −1.29 | −0.79 | −2.25 |
Methyl Pyruvate | G2 | 0.15 | 0.00 | −0.14 | −1.00 | −0.63 | −1.61 |
gamma-Amino-Butryric Acid | H2 | −0.84 | −0.27 | 0.42 | −0.88 | −1.22 | −2.33 |
L-Alanine | E3 | −0.08 | 0.82 | 1.62 | −0.79 | −1.26 | −2.58 |
D-Trehalose | A4 | −0.14 | −0.02 | −0.74 | −1.74 | −1.80 | −2.97 |
L-Arginine | E4 | 0.13 | 1.88 | 0.88 | −1.82 | −1.97 | −4.88 |
D-Gluconic Acid | F4 | 0.06 | 3.76 | 0.30 | −1.55 | −0.88 | −3.27 |
L-Lactic Acid | G4 | 0.26 | 1.71 | 1.54 | −1.01 | −0.60 | −3.44 |
beta-Hydroxy-D,L-Butyric Acid | H4 | −0.71 | 0.70 | 0.86 | −1.31 | −1.46 | −4.17 |
L-Aspartic Acid | E5 | 0.26 | 1.60 | 0.17 | −0.81 | −1.46 | −2.16 |
Citric Acid | G5 | −0.13 | −0.32 | 4.33 | −0.60 | −1.29 | −3.31 |
N-Acetyl-D-Glucosamine | B6 | 0.38 | −0.03 | 0.56 | −1.41 | −1.00 | −3.36 |
L-Glutamic Acid | E6 | 0.19 | 0.16 | 0.42 | −2.14 | −1.66 | −4.23 |
alpha-Keto-Glutaric Acid | G6 | −0.02 | 2.87 | 0.71 | −1.73 | −1.68 | −4.03 |
L-Histidine | E7 | 0.34 | 1.12 | −0.28 | −1.67 | −1.37 | −2.75 |
Propionic Acid | H7 | 0.00 | 0.00 | −1.98 | −2.81 | −2.27 | −9.17 |
L-Malic Acid | G8 | 0.12 | 0.24 | 0.28 | −0.07 | −1.51 | −4.70 |
Acetic Acid | H8 | 0.00 | 0.00 | 2.90 | −1.42 | −2.55 | −7.23 |
Bromo-Succinic Acid | G9 | 3.99 | 0.00 | 0.21 | −0.22 | −0.38 | −1.33 |
Formic Acid | H9 | −2.16 | 0.00 | −0.63 | −1.44 | −0.65 | −4.73 |
Positive Control | A10 | −0.19 | 0.18 | 0.34 | −1.23 | −1.71 | −4.12 |
1% NaCl | B10 | −0.17 | 0.15 | −0.15 | −0.13 | −1.35 | −2.17 |
1% Sodium Lactate | C10 | 0.13 | 0.43 | 0.66 | −0.77 | −1.27 | −3.52 |
Troleandomycin | D10 | 0.42 | 1.64 | −1.75 | −1.40 | −1.05 | −1.81 |
Lincomycin | E10 | 0.00 | 0.00 | 0.55 | −0.85 | −1.30 | −1.90 |
Vancomycin | F10 | −0.04 | 0.04 | 0.29 | −1.02 | −1.48 | −2.79 |
Nalidixic Acid | G10 | 0.15 | 0.56 | 0.50 | −0.74 | −1.36 | −2.11 |
pH 6 | A11 | 0.24 | 1.49 | −0.56 | −1.50 | −1.53 | −2.70 |
4% NaCl | B11 | 0.57 | 1.48 | −0.28 | −0.10 | −0.56 | −1.21 |
Fusidic Acid | C11 | −0.10 | 0.44 | −0.21 | −1.71 | −2.18 | −4.03 |
Rifamycin SV | D11 | 0.03 | 0.58 | −0.81 | −1.92 | −2.31 | −3.92 |
Guanidine HCl | E11 | 0.32 | 2.58 | −0.59 | −0.90 | −1.18 | −2.27 |
pH 5 | A12 | −0.78 | 1.89 | −0.88 | −0.72 | −0.88 | −1.10 |
D-Serine | C12 | −0.62 | 0.00 | 1.07 | −0.51 | −1.55 | −2.67 |
Minocycline | D12 | −0.20 | 0.48 | 1.38 | −2.10 | −1.75 | −4.11 |
Niaproof 4 | E12 | −0.29 | −0.11 | −0.22 | −1.29 | −1.58 | −3.88 |
Potassium Tellurite | G12 | −0.41 | −1.00 | 2.82 | −1.66 | −3.39 | −5.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katzarov, S.; Behrends, V. Temporal Hierarchy and Context-Dependence of Quorum Sensing Signal in Pseudomonas aeruginosa. Life 2022, 12, 1953. https://doi.org/10.3390/life12121953
Katzarov S, Behrends V. Temporal Hierarchy and Context-Dependence of Quorum Sensing Signal in Pseudomonas aeruginosa. Life. 2022; 12(12):1953. https://doi.org/10.3390/life12121953
Chicago/Turabian StyleKatzarov, Stoyko, and Volker Behrends. 2022. "Temporal Hierarchy and Context-Dependence of Quorum Sensing Signal in Pseudomonas aeruginosa" Life 12, no. 12: 1953. https://doi.org/10.3390/life12121953
APA StyleKatzarov, S., & Behrends, V. (2022). Temporal Hierarchy and Context-Dependence of Quorum Sensing Signal in Pseudomonas aeruginosa. Life, 12(12), 1953. https://doi.org/10.3390/life12121953