Effects of Supplementing Quails’ (Coturnix japonica) Diets with a Blend of Clove (Syzygium aromaticum) and Black Cumin (Nigella sativa) Oils on Growth Performance and Health Aspects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diets, Birds, and Experimental Procedure
2.2. Data Collection
2.2.1. Growth Performance
2.2.2. Biochemical Analysis
2.2.3. Hepatic Antioxidant Indices
2.3. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Traits
3.3. Blood Biochemical Parameters
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vlaicu, P.A.; Untea, A.E.; Turcu, R.P.; Saracila, M.; Panaite, T.D.; Cornescu, G.M. Nutritional Composition and Bioactive Compounds of Basil, Thyme and Sage Plant Additives and Their Functionality on Broiler Thigh Meat Quality. Foods 2022, 11, 1105. [Google Scholar] [CrossRef]
- Hartady, T.; Syamsunarno, M.R.A.A.; Priosoeryanto, B.P.; Jasni, S.; Balia, R.L. Review of herbal medicine works in the avian species. Vet. World. 2021, 14, 2889–2906. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Swelum, A.A.; Sindi, R.A.; Barkat, R.A.; Khalifa, N.E.; Amin, A.A.; El-Raghi, A.A.; Tufarelli, V.; Losacco, C.; Abd El-Hack, M.E. Responses of sperm mitochondria functionality in animals to thermal stress: The mitigating effects of dietary natural antioxidants. Reprod. Domest. Anim. 2022, 57, 1101–1112. [Google Scholar] [CrossRef]
- Rahim, M.A.; Shoukat, A.; Khalid, W.; Ejaz, A.; Itrat, N.; Majeed, I.; Koraqi, H.; Imran, M.; Nisa, M.U.; Nazir, A. A narrative review on various oil extraction methods, encapsulation processes, fatty acid profiles, oxidative stability, and medicinal properties of back seed (Nigella sativa). Foods 2022, 11, 2826. [Google Scholar] [CrossRef]
- Swelum, A.A.; Hashem, N.M.; Abdelnour, S.A.; Taha, A.E.; Ohran, H.; Khafaga, A.F.; El-Tarabily, K.A.; Abd El-Hack, M.E. Effects of phytogenic feed additives on the reproductive performance of animals. Saudi J. Biol. Sci. 2021, 28, 5816–5822. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2022, 27, 233. [Google Scholar] [CrossRef]
- Arif, M.; Rehman, A.u.; Naseer, K.; Abdel-Hafez, S.H.; Alminderej, F.M.; El-Saadony, M.T.; Abd El-Hack, M.E.; Taha, A.E.; Elnesr, S.S.; Salem, H.M. Effect of Aloe vera and clove powder supplementation on growth performance, carcass and blood chemistry of Japanese quails. Poult. Sci. 2022, 101, 101702. [Google Scholar] [CrossRef]
- Kachungwa Lugata, J.; Ortega, A.D.S.V.; Szabó, C. The Role of Methionine Supplementation on oxidative stress and antioxidant Status of poultry—A review. Agriculture 2022, 12, 1701. [Google Scholar] [CrossRef]
- Wani, M.R.; Shadab, G. Antioxidant thymoquinone and eugenol alleviate TiO2 nanoparticle-induced toxicity in human blood cells in vitro. Toxicol. Mech. Methods 2021, 31, 619–629. [Google Scholar] [CrossRef]
- Hussein, M.M.A.; Abd El-Hack, M.E.; Mahgoub, S.A.; Saadeldin, I.M.; Swelum, A.A. Effects of clove (Syzygium aromaticum) oil on quail growth, carcass traits, blood components, meat quality, and intestinal microbiota. Poult. Sci. 2019, 98, 319–329. [Google Scholar] [CrossRef]
- Suliman, G.M.; Alowaimer, A.N.; Al-Mufarrej, S.I.; Hussein, E.O.S.; Fazea, E.H.; Naiel, M.A.E.; Alhotan, R.A.; Swelum, A.A. The effects of clove seed (Syzygium aromaticum) dietary administration on carcass characteristics, meat quality, and sensory attributes of broiler chickens. Poult. Sci. 2021, 100, 100904. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Mohamady, M.A.; Fernández-López, J.; Abd ElRazik, K.A.; Omer, E.A.; Pérez-Alvarez, J.A.; Sendra, E. In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food Control 2011, 22, 1715–1722. [Google Scholar] [CrossRef]
- Gülçin, İ.; Elmastaş, M.; Aboul-Enein, H.Y. Antioxidant activity of clove oil—A powerful antioxidant source. Arab. J. Chem. 2012, 5, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Al-Okbi, S.Y.; Mohamed, D.A.; Hamed, T.E.; Edris, A.E. Protective effect of clove oil and eugenol microemulsions on fatty liver and dyslipidemia as components of metabolic syndrome. J. Med. Food 2014, 17, 764–771. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Poultry: 1994; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Duncombe, W.G. The colorimetric micro-determination of non-esterified fatty acids in plasma. Clin. Chim. Acta 1964, 9, 122–125. [Google Scholar] [CrossRef]
- Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [CrossRef]
- Lopes-Virella, M.F.; Stone, P.; Ellis, S.; Colwell, J.A. Cholesterol determination in high-density lipoproteins separated by three different methods. Clin. Chem. 1977, 23, 882–884. [Google Scholar] [CrossRef]
- Fossati, P.; Prencipe, L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin. Chem. 1982, 28, 2077–2080. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Mahgoub, S.A.; Hussein, M.M.A.; Saadeldin, I.M. Improving growth performance and health status of meat-type quail by supplementing the diet with black cumin cold-pressed oil as a natural alternative for antibiotics. Environ. Sci. Pollut. Res. 2018, 25, 1157–1167. [Google Scholar] [CrossRef]
- El-Bahr, S.M.; Shousha, S.; Albokhadaim, I.; Shehab, A.; Khattab, W.; Ahmed-Farid, O.; El-Garhy, O.; Abdelgawad, A.; El-Naggar, M.; Moustafa, M.; et al. Impact of dietary zinc oxide nanoparticles on selected serum biomarkers, lipid peroxidation and tissue gene expression of antioxidant enzymes and cytokines in Japanese quail. BMC Vet. Res. 2020, 16, 349. [Google Scholar] [CrossRef]
- SAS. STAT User’s Guide for Personal Computers, Release 6.12; SAS Institute Inc.: Cary, NC, USA, 2001. [Google Scholar]
- Saied, A.; Attia, A.; El-Kholy, M.; Nagar, A.E.; Reda, F. Feeding Nigella sativa oil to broilers affects their performance, serum constituents and cecum microbiota. S. Afr. J. Anim. Sci. 2022, 52, 34–42. [Google Scholar] [CrossRef]
- Abdelsattar, M.M.; Rashwan, A.K.; Younes, H.A.; Abdel-Hamid, M.; Romeih, E.; Mehanni, A.-H.E.; Vargas-Bello-Pérez, E.; Chen, W.; Zhang, N. An updated and comprehensive review on the composition and preservation strategies of bovine colostrum and its contributions to animal health. Anim. Feed Sci. Technol. 2022, 291, 115379. [Google Scholar] [CrossRef]
- Althobaiti, N.A.; Raza, S.H.A.; BinMowyna, M.N.; Aldawsari, R.D.; Abdelnour, S.A.; Abdel-Hamid, M.; Wijayanti, D.; Kamal-Eldin, A.; Wani, A.K.; Zan, L. The potential therapeutic role of camel milk exosomes. Ann. Anim. Sci. 2022. [Google Scholar] [CrossRef]
- Ertas, O.N.; Guler, T.; Çiftçi, M.; DalkIlIç, B.; Simsek, U.G. The effect of an essential oil mix derived from oregano, clove and anise on broiler performance. Int. J. Poult. Sci. 2005, 4, 879–884. [Google Scholar]
- Abd El-Hack, M.E.; Mahgoub, S.A.; Alagawany, M.; Dhama, K. Influences of dietary supplementation of antimicrobial cold pressed oils mixture on growth performance and intestinal microflora of growing Japanese quails. Int. J. Pharmacol. 2015, 11, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Mukhtar, M.A. The effect of dietary clove oil on broiler performance. Aust. J. Basic Appl. Sci. 2011, 5, 49–51. [Google Scholar]
- Azeem, T.; Zaib-Ur-Rehman, U.S.; Asif, M.; Arif, M.; Rahman, A. Effect of Nigella sativa on poultry health and production: A review. Sci. Lett. 2014, 2, 76–82. [Google Scholar]
- Avci, G.; Ulutas, E.; Ozdemir, V.; Kivrak, I.; Bulbul, A. The positive effect of black seed (Nigella sativa L.) essential oil on thyroid hormones in rats with hypothyroidism and hyperthyroidism. J. Food Biochem. 2022, 46, e13801. [Google Scholar] [CrossRef]
- Denli, M.; Okan, F.; Uluocak, A. Effect of dietary black seed (Nigella sativa L.) extract supplementation on laying performance and egg quality of quail (Coturnix cotnurnix japonica). J. Appl. Anim. Res. 2004, 26, 73–76. [Google Scholar] [CrossRef]
- Isabel, B.; Santos, Y. Effects of dietary organic acids and essential oils on growth performance and carcass characteristics of broiler chickens. J. Appl. Poult. Res. 2009, 18, 472–476. [Google Scholar] [CrossRef]
- Parmar, J.; Goswami, B.; Sadariya, K.; Bhavsar, S.; Thaker, A. Evaluation of immunomodulatory activities of clove oil in broiler. J. Vet. Pharmacol. Toxicol. 2021, 20, 18–26. [Google Scholar]
- Ferket, P.; Van Heugten, E.; Van Kempen, T.; Angel, R. Nutritional strategies to reduce environmental emissions from nonruminants. J. Anim. Sci. 2002, 80, E168–E182. [Google Scholar] [CrossRef]
- Dosoky, W.M.; Zeweil, H.S.; Ahmed, M.H.; Zahran, S.M.; Shaalan, M.M.; Abdelsalam, N.R.; Abdel-Moneim, A.-M.E.; Taha, A.E.; El-Tarabily, K.A.; Abd El-Hack, M.E. Impacts of onion and cinnamon supplementation as natural additives on the performance, egg quality, and immunity in laying Japanese quail. Poult. Sci. 2021, 100, 101482. [Google Scholar] [CrossRef]
- Azaegan, M.M.; Hassanabadi, A.; Nasiri, M.H.; Kermanshahi, H. Supplementation of clove essential oils and probiotic to the broiler’s diet on performance, carcass traits and blood components. Iran. J. Appl. Anim. Sci. 2014, 4, 117–122. [Google Scholar]
- Averbeck, C. Haematology and blood chemistry of healthy and clinically abnormal great black-backed gulls (Larus marinus) and herring gulls (Larus argentatus). Avian Pathol. 1992, 21, 215–223. [Google Scholar] [CrossRef]
- Al-Beitawi, N.; El-Ghousein, S. Effect of feeding different levels of Nigella sativa seeds (black cumin) on performance, blood constituents and carcass characteristics of broiler chicks. Int. J. Poult. Sci. 2008, 7, 715–721. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.A.; ur Rahman, U.; Khan, M.R.; Sahar, A.; Mehmood, T.; Khan, M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Adv. 2017, 7, 32669–32681. [Google Scholar] [CrossRef] [Green Version]
- Venkadeswaran, K.; Muralidharan, A.R.; Annadurai, T.; Ruban, V.V.; Sundararajan, M.; Anandhi, R.; Thomas, P.A.; Geraldine, P. Antihypercholesterolemic and antioxidative potential of an extract of the plant, Piper betle, and its active constituent, eugenol, in triton WR-1339-induced hypercholesterolemia in experimental rats. Evid.-Based Complement. Altern. Med. 2014, 2014, 478973. [Google Scholar] [CrossRef] [Green Version]
- Harb, A.A.; Bustanji, Y.K.; Almasri, I.M.; Abdalla, S.S. Eugenol reduces LDL cholesterol and hepatic steatosis in hypercholesterolemic rats by modulating TRPV1 receptor. Sci. Rep. 2019, 9, 14003. [Google Scholar] [CrossRef]
Ingredients | % |
---|---|
Gluten meal | 3.20 |
Soybean meal | 38.69 |
Yellow Corn | 53.03 |
Soybean oil | 1.67 |
Di Calcium phosphate | 0.81 |
Vit-min Premix * | 0.30 |
NaCl | 0.11 |
Limestone | 0.30 |
DL Methionine | 0.39 |
L-Lysine HCl | 1.50 |
Calculated analysis **: | |
Crude protein, % | 24.04 |
Metabilozable energy, Kcal/kg | 2903 |
Calcium, % | 0.85 |
Available phosphorous, % | 0.45 |
Methionine + Cysteine, % | 0.88 |
Lysine, % | 1.60 |
Items | BW (g) | BWG (g) | ||||
---|---|---|---|---|---|---|
1 wk | 3 wk | 6 wk | 1–3 wk | 3–6 wk | 1–6 wk | |
CLNS Mixture (mL/kg Diet) | ||||||
0.00 | 22.86 | 92.54 | 191.62 a | 4.97 | 7.08 a | 6.03 a |
1.50 | 22.71 | 90.10 | 185.02 b | 4.81 | 6.78 b | 5.79 b |
3.00 | 22.66 | 92.42 | 193.61 a | 4.98 | 7.22 a | 6.11 a |
SEM | 0.06 | 1.61 | 4.65 | 0.11 | 0.32 | 0.17 |
p values | 0.118 | 0.963 | 0.006 | 0.962 | 0.007 | 0.007 |
Items | FI (g/Day) | FCR (g Feed/g Gain) | ||||
---|---|---|---|---|---|---|
1–3 wk | 3–6 wk | 1–6 wk | 1–3 wk | 3–6 wk | 1–6 wk | |
CLNS Mixture (mL/kg Diet) | ||||||
0.00 s | 12.47 b | 20.30 | 16.38 b | 2.41 | 2.76 | 2.58 |
1.50 | 12.69 b | 21.59 | 17.14 a | 2.54 | 3.17 | 2.86 |
3.00 | 13.60 a | 21.55 | 17.57 a | 2.63 | 2.86 | 2.75 |
SEM | 0.10 | 1.77 | 0.23 | 0.06 | 0.18 | 0.09 |
p value | 0.003 | 0.052 | 0.000 | 0.827 | 0.116 | 0.119 |
Items | Carcass Traits (% of Slaughter Weight) | ||||
---|---|---|---|---|---|
Dressing | Giblets | Carcass | Breast | Thigh | |
CLNS Mixture (mL/kg Diet) | |||||
0.00 | 70.45 b | 5.48 | 64.97 c | 43.06 b | 22.13 b |
1.50 | 73.35 a | 5.80 | 67.55 b | 44.66 a | 23.01 a |
3.00 | 73.74 a | 5.30 | 68.45 a | 44.78 a | 23.90 a |
SEM | 0.80 | 0.10 | 0.75 | 0.35 | 0.38 |
p value | 0.01 | 0.231 | >0.01 | >0.01 | >0.01 |
Items | ALT (U/L) | AST (U/L) | Total Bilirubin (mg/dL) | Total Protein (g/dL) | Albumin (g/dL) | Total Globulins (g/dL) |
---|---|---|---|---|---|---|
CLNS Mixture (mL/kg Diet) | ||||||
0.00 | 22.77 | 285.60 | 0.65 | 2.33 c | 1.82 | 0.51 b |
1.50 | 19.58 | 261.43 | 0.87 | 2.96 b | 1.83 | 1.13 a |
3.00 | 16.52 | 223.13 | 0.79 | 3.53 a | 1.92 | 1.61 a |
SEM | 2.30 | 19.56 | 0.06 | 0.27 | 0.10 | 0.21 |
p value | 0.124 | 0.389 | 0.250 | 0.016 | 0.082 | 0.006 |
Items | BUN (mg/dL) | Creatinine (mg/dL) | Total Cholesterol (mg/dL) | Triacylglycerol (mg/dL) | HDL-c (mg/dL) | LDL-c (mg/dL) | FFA (mg/dL) |
---|---|---|---|---|---|---|---|
CLNS Mixture (mL/kg Diet) | |||||||
0.00 | 18.85 a | 0.79 a | 307.60 a | 309.39 a | 79.24 c | 92.49 a | 7.23 a |
1.50 | 14.03 b | 0.60 b | 198.33 b | 240.86 b | 103.80 b | 64.81 b | 5.83 b |
3.00 | 11.62 c | 0.49 c | 171.70 c | 181.68 c | 123.12 a | 51.39 c | 4.53 c |
SEM | 0.50 | 0.04 | 20.26 | 23.81 | 20.01 | 8.07 | 0.39 |
p value | 0.022 | 0.003 | 0.003 | 0.001 | 0.003 | 0.000 | 0.000 |
Items | MDA (μmol/g Tissue) | GSH (mg/g Tissue) | CAT (μmol H2O2 Decomposed/g Tissue) | SOD (U/g Tissue) | GPx (μmol NADPH/g Tissue | GR (U/g Tissue) | GST (U/g Tissue) |
---|---|---|---|---|---|---|---|
CLNS Mixture (mL/kg Diet) | |||||||
0.00 | 143.98 a | 14.32 a | 14.70 c | 7.61 c | 8.42 c | 0.75 c | 0.18 c |
1.50 | 102.64 b | 30.11 b | 23.40 b | 20.58 b | 12.37 b | 1.79 b | 0.36 b |
3.00 | 80.44 c | 37.36 c | 28.94 a | 26.60 a | 14.91 a | 2.26 a | 0.57 a |
SEM | 14.35 | 4.71 | 2.21 | 4.38 | 0.92 | 0.34 | 0.05 |
p value | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majrashi, K.A. Effects of Supplementing Quails’ (Coturnix japonica) Diets with a Blend of Clove (Syzygium aromaticum) and Black Cumin (Nigella sativa) Oils on Growth Performance and Health Aspects. Life 2022, 12, 1915. https://doi.org/10.3390/life12111915
Majrashi KA. Effects of Supplementing Quails’ (Coturnix japonica) Diets with a Blend of Clove (Syzygium aromaticum) and Black Cumin (Nigella sativa) Oils on Growth Performance and Health Aspects. Life. 2022; 12(11):1915. https://doi.org/10.3390/life12111915
Chicago/Turabian StyleMajrashi, Kamlah Ali. 2022. "Effects of Supplementing Quails’ (Coturnix japonica) Diets with a Blend of Clove (Syzygium aromaticum) and Black Cumin (Nigella sativa) Oils on Growth Performance and Health Aspects" Life 12, no. 11: 1915. https://doi.org/10.3390/life12111915
APA StyleMajrashi, K. A. (2022). Effects of Supplementing Quails’ (Coturnix japonica) Diets with a Blend of Clove (Syzygium aromaticum) and Black Cumin (Nigella sativa) Oils on Growth Performance and Health Aspects. Life, 12(11), 1915. https://doi.org/10.3390/life12111915