Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = suborbital space

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7027 KB  
Article
The apex MRMSS: A Multi-Role Mission Support System and Service Module Simulator for Payloads of Sounding Rockets and Other Space Applications
by Nico Maas, Sebastian Feles and Jean-Pierre de Vera
Eng 2025, 6(9), 247; https://doi.org/10.3390/eng6090247 - 19 Sep 2025
Cited by 3 | Viewed by 680
Abstract
To support the development, testing, and operations of the apex experiments flown on-board the MAPHEUS-8 and -10 missions, a series of service module simulators and mission support tools have been developed and improved over the years. With each generation, a more generalized approach [...] Read more.
To support the development, testing, and operations of the apex experiments flown on-board the MAPHEUS-8 and -10 missions, a series of service module simulators and mission support tools have been developed and improved over the years. With each generation, a more generalized approach has been taken, which allowed simulating not only sounding rocket service module payload interfaces but also the Astrobotic Peregrine Moon Lander and the Swedish Space Corporation Suborbital Express experiment interfaces. This study is part three of a three-part series describing the apex Mk.2/Mk.3 experiments, open-source ground segment, and service module simulator. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

23 pages, 8683 KB  
Article
MicroGravity Explorer Kit (MGX): An Open-Source Platform for Accessible Space Science Experiments
by Waldenê de Melo Moura, Carlos Renato dos Santos, Moisés José dos Santos Freitas, Adriano Costa Pinto, Luciana Pereira Simões and Alison Moraes
Aerospace 2024, 11(10), 790; https://doi.org/10.3390/aerospace11100790 - 25 Sep 2024
Cited by 3 | Viewed by 3876
Abstract
The study of microgravity, a condition in which an object experiences near-zero weight, is a critical area of research with far-reaching implications for various scientific disciplines. Microgravity allows scientists to investigate fundamental physical phenomena influenced by Earth’s gravitational forces, opening up new possibilities [...] Read more.
The study of microgravity, a condition in which an object experiences near-zero weight, is a critical area of research with far-reaching implications for various scientific disciplines. Microgravity allows scientists to investigate fundamental physical phenomena influenced by Earth’s gravitational forces, opening up new possibilities in fields such as materials science, fluid dynamics, and biology. However, the complexity and cost of developing and conducting microgravity missions have historically limited the field to well-funded space agencies, universities with dedicated government funding, and large research institutions, creating a significant barrier to entry. This paper presents the MicroGravity Explorer Kit’s (MGX) design, a multifunctional platform for conducting microgravity experiments aboard suborbital rocket flights. The MGX aims to democratize access to microgravity research, making it accessible to high school students, undergraduates, and researchers. To ensure that the tool is versatile across different scenarios, the authors conducted a comprehensive literature review on microgravity experiments, and specific requirements for the MGX were established. The MGX is designed as an open-source platform that supports various experiments, reducing costs and accelerating development. The multipurpose experiment consists of a Jetson Nano computer with multiple sensors, such as inertial sensors, temperature and pressure, and two cameras with up to 4k resolution. The project also presents examples of codes for data acquisition and compression and the ability to process images and run machine learning algorithms to interpret results. The MGX seeks to promote greater participation and innovation in space sciences by simplifying the process and reducing barriers to entry. The design of a platform that can democratize access to space and research related to space sciences has the potential to lead to groundbreaking discoveries and advancements in materials science, fluid dynamics, and biology, with significant practical applications such as more efficient propulsion systems and novel materials with unique properties. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

10 pages, 612 KB  
Review
Cardiovascular Effects of Cosmic Radiation and Microgravity
by Omar Giacinto, Mario Lusini, Emanuele Sammartini, Alessandro Minati, Ciro Mastroianni, Antonio Nenna, Giuseppe Pascarella, Davide Sammartini, Massimiliano Carassiti, Fabio Miraldi, Massimo Chello and Francesco Pelliccia
J. Clin. Med. 2024, 13(2), 520; https://doi.org/10.3390/jcm13020520 - 17 Jan 2024
Cited by 6 | Viewed by 4182
Abstract
Recent spaceflights involving nonprofessional people have opened the doors to the suborbital space tourism business. However, they have also drawn public attention to the safety and hazards associated with space travel. Unfortunately, space travel involves a myriad of health risks for people, ranging [...] Read more.
Recent spaceflights involving nonprofessional people have opened the doors to the suborbital space tourism business. However, they have also drawn public attention to the safety and hazards associated with space travel. Unfortunately, space travel involves a myriad of health risks for people, ranging from DNA damage caused by radiation exposure to the hemodynamic changes that occur when living in microgravity. In fact, the primary pathogenetic role is attributed to cosmic radiation, since deep space lacks the protective benefit of Earth’s magnetic shielding. The second risk factor for space-induced pathologies is microgravity, which may affect organ function and cause a different distribution of fluid inside the human body. Both cosmic radiation and microgravity may lead to the alteration of cellular homeostasis and molecular changes in cell function. These, in turn, might have a direct impact on heart function and structure. The aim of this review is to draw attention to the fact that spaceflights constitute a novel frontier in biomedical research. We summarize the most important clinical and experimental evidence regarding the cardiovascular effects of cosmic radiation and microgravity. Finally, we highlight that unraveling the mechanisms underlying how space radiation and microgravity affect the cardiovascular system is crucial for identifying potential countermeasures and developing effective therapeutic strategies. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

17 pages, 14502 KB  
Article
The Study of Selected Aspects of the Suborbital Vehicle Return Flight Trajectory
by Agnieszka Kwiek, Marcin Figat and Tomasz Goetzendorf-Grabowski
Aerospace 2023, 10(5), 489; https://doi.org/10.3390/aerospace10050489 - 22 May 2023
Cited by 5 | Viewed by 2985
Abstract
The article presents the results of preliminary studies of the parameters of the return flight trajectory of a rocket plane for suborbital tourist flights into space. The rocket plane is designed as a tailless vehicle and has an unconventional arrangement of control surfaces: [...] Read more.
The article presents the results of preliminary studies of the parameters of the return flight trajectory of a rocket plane for suborbital tourist flights into space. The rocket plane is designed as a tailless vehicle and has an unconventional arrangement of control surfaces: elevons and side plates that can rotate. The main aim of the research presented in this paper is to investigate the dynamic stability of the rocket plane and the response to control in the return suborbital flight. The secondary objective is to study the behavior of the rocket plane with respect to the initial state of the return flight. The key parameters taken into account in this study are the Mach number and G-load. Moreover, a study of the trim condition, dynamic stability and response to control of a rocket plane in the low part of the stratosphere is presented. The tests were carried out using a numerical simulation of the flight of a rocket plane. Dynamic stability was determined on the basis of time history analysis, and the results were compared with the results obtained by solving the eigenvalues problem. The results revealed that the rocket plane should be equipped with a Stability Augmentation System to improve short period damping at supersonic speeds at moderate altitudes. It can also be concluded that the maximum load G and Ma do not occur at the same height of flight. In terms of the effectiveness of the control surfaces, they start working at an altitude of 55 km. Due to the speed regime, the obtained results can be useful in the design of such objects as rocket planes, highly maneuverable and supersonic aircraft. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

13 pages, 27327 KB  
Review
Preserving Ready-to-Eat Meals Using Microwave Technologies for Future Space Programs
by Carolyn Ross, Shyam Sablani and Juming Tang
Foods 2023, 12(6), 1322; https://doi.org/10.3390/foods12061322 - 20 Mar 2023
Cited by 12 | Viewed by 6259
Abstract
The crewed suborbital and space flights launched by private companies over the past three years have rejuvenated public interest in space travel, including space tourism. Ready-to-eat meals (MREs) are the main source of nutrients and energy for space travelers. It is critical that [...] Read more.
The crewed suborbital and space flights launched by private companies over the past three years have rejuvenated public interest in space travel, including space tourism. Ready-to-eat meals (MREs) are the main source of nutrients and energy for space travelers. It is critical that those meals are free of bacterial and viral pathogens and have adequate shelf life. The participation of private companies in space programs will create new opportunities and demand for high-quality and microbiologically safe MREs for future space travels. In this article, we provide a brief review of nutrition and energy requirements for human activities in space. We discuss the general thermal processing requirements for control of bacterial and viral pathogens in MREs and introduce advanced thermal preservation technologies based on microwaves for production of MREs with different shelf-lives under various storage conditions. We also present the latest advancements in the development of polymer packaging materials for quality preservation of thermally stabilized MREs over extended storage. Finally, we recommend future research on issues related to the sensory quality of specially formulated MREs, microbial safety of dried foods that complement high moisture MREs, and food package waste management in future space missions. Full article
(This article belongs to the Special Issue Advances of Ultrasound and Microwave Technology Application in Foods)
Show Figures

Figure 1

14 pages, 5221 KB  
Article
Utilizing the KSC Fixation Tube to Conduct Human-Tended Plant Biology Experiments on a Suborbital Spaceflight
by Natasha J. Haveman, Mingqi Zhou, Jordan Callaham, Hunter F. Strickland, Donald Houze, Susan Manning-Roach, Gerard Newsham, Anna-Lisa Paul and Robert J. Ferl
Life 2022, 12(11), 1871; https://doi.org/10.3390/life12111871 - 13 Nov 2022
Cited by 3 | Viewed by 3355
Abstract
Suborbital spaceflights now enable human-tended research investigating short-term gravitational effects in biological systems, eliminating the need for complex automation. Here, we discuss a method utilizing KSC Fixation Tubes (KFTs) to both carry biology to suborbital space as well as fix that biology at [...] Read more.
Suborbital spaceflights now enable human-tended research investigating short-term gravitational effects in biological systems, eliminating the need for complex automation. Here, we discuss a method utilizing KSC Fixation Tubes (KFTs) to both carry biology to suborbital space as well as fix that biology at certain stages of flight. Plants on support media were inserted into the sample side of KFTs preloaded with RNAlater in the fixation chamber. The KFTs were activated at various stages of a simulated flight to fix the plants. RNA-seq analysis conducted on tissue samples housed in KFTs, showed that plants behaved consistently in KFTs when compared to petri-plates. Over the time course, roots adjusted to hypoxia and leaves adjusted to changes in photosynthesis. These responses were due in part to the environment imposed by the encased triple containment of the KFTs, which is a requirement for flight in human spacecraft. While plants exhibited expected reproducible transcriptomic alteration over time in the KFTs, responses to clinorotation during the simulated flight suggest that transcriptomic responses to suborbital spaceflight can be examined using this approach. Full article
(This article belongs to the Special Issue Plants and Microgravity)
Show Figures

Figure 1

19 pages, 8567 KB  
Article
A Ka-Band Wind Geophysical Model Function Using Doppler Scatterometer Measurements from the Air-Sea Interaction Tower Experiment
by Federica Polverari, Alexander Wineteer, Ernesto Rodríguez, Dragana Perkovic-Martin, Paul Siqueira, J. Thomas Farrar, Max Adam, Marc Closa Tarrés and James B. Edson
Remote Sens. 2022, 14(9), 2067; https://doi.org/10.3390/rs14092067 - 26 Apr 2022
Cited by 7 | Viewed by 3842
Abstract
Physical understanding and modeling of Ka-band ocean surface backscatter is challenging due to a lack of measurements. In the framework of the NASA Earth Ventures Suborbital-3 Submesoscale Ocean Dynamics Experiment (S-MODE) mission, a Ka-Band Ocean continuous wave Doppler Scatterometer (KaBODS) built by the [...] Read more.
Physical understanding and modeling of Ka-band ocean surface backscatter is challenging due to a lack of measurements. In the framework of the NASA Earth Ventures Suborbital-3 Submesoscale Ocean Dynamics Experiment (S-MODE) mission, a Ka-Band Ocean continuous wave Doppler Scatterometer (KaBODS) built by the University of Massachusetts, Amherst (UMass) was installed on the Woods Hole Oceanographic Institution (WHOI) Air-Sea Interaction Tower. Together with ASIT anemometers, a new data set of Ka-band ocean surface backscatter measurements along with surface wind/wave and weather parameters was collected. In this work, we present the KaBODS instrument and an empirical Ka-band wind Geophysical Model Function (GMF), the so-called ASIT GMF, based on the KaBODS data collected over a period of three months, from October 2019 to January 2020, for incidence angles ranging between 40° and 68°. The ASIT GMF results are compared with an existing Ka-band wind GMF developed from data collected during a tower experiment conducted over the Black Sea. The two GMFs show differences in terms of wind speed and wind direction sensitivity. However, they are consistent in the values of the standard deviation of the model residuals. This suggests an intrinsic geophysical variability characterizing the Ka-band surface backscatter. The observed variability does not significantly change when filtering out swell-dominated data, indicating that the long-wave induced backscatter modulation is not the primary source of the KaBODS backscatter variability. We observe evidence of wave breaking events, which increase the skewness of the backscatter distribution in linear space, consistent with previous studies. Interestingly, a better agreement is seen between the GMFs and the actual data at an incidence angle of 60° for both GMFs, and the statistical analysis of the model residuals shows a reduced backscatter variability at this incidence angle. This study shows that the ASIT data set is a valuable reference for studies of Ka-band backscatter. Further investigations are on-going to fully characterize the observed variability and its implication in the wind GMF development. Full article
(This article belongs to the Special Issue Remote Sensing of Ocean Surface Winds)
Show Figures

Graphical abstract

23 pages, 24094 KB  
Review
Development of Green Storable Hybrid Rocket Propulsion Technology Using 98% Hydrogen Peroxide as Oxidizer
by Adam Okninski, Pawel Surmacz, Bartosz Bartkowiak, Tobiasz Mayer, Kamil Sobczak, Michal Pakosz, Damian Kaniewski, Jan Matyszewski, Grzegorz Rarata and Piotr Wolanski
Aerospace 2021, 8(9), 234; https://doi.org/10.3390/aerospace8090234 - 24 Aug 2021
Cited by 54 | Viewed by 15365
Abstract
This paper presents the development of indigenous hybrid rocket technology, using 98% hydrogen peroxide as an oxidizer. Consecutive steps are presented, which started with interest in hydrogen peroxide and the development of technology to obtain High Test Peroxide, finally allowing concentrations of up [...] Read more.
This paper presents the development of indigenous hybrid rocket technology, using 98% hydrogen peroxide as an oxidizer. Consecutive steps are presented, which started with interest in hydrogen peroxide and the development of technology to obtain High Test Peroxide, finally allowing concentrations of up to 99.99% to be obtained in-house. Hydrogen peroxide of 98% concentration (mass-wise) was selected as the workhorse for further space propulsion and space transportation developments. Over the course nearly 10 years of the technology’s evolution, the Lukasiewicz Research Network—Institute of Aviation completed hundreds of subscale hybrid rocket motor and component tests. In 2017, the Institute presented the first vehicle in the world to have demonstrated in-flight utilization for 98% hydrogen peroxide. This was achieved by the ILR-33 AMBER suborbital rocket, which utilizes a hybrid rocket propulsion as the main stage. Since then, three successful consecutive flights of the vehicle have been performed, and flights to the Von Karman Line are planned. The hybrid rocket technology developments are described. Advances in hybrid fuel technology are shown, including the testing of fuel grains. Theoretical studies and sizing of hybrid propulsion systems for spacecraft, sounding rockets and small launch vehicles have been performed, and planned further developments are discussed. Full article
(This article belongs to the Special Issue Hybrid Rocket(Volume II))
Show Figures

Figure 1

16 pages, 3487 KB  
Article
Evaluation of Time Difference of Arrival (TDOA) Networks Performance for Launcher Vehicles and Spacecraft Tracking
by Paolo Marzioli, Fabio Santoni and Fabrizio Piergentili
Aerospace 2020, 7(10), 151; https://doi.org/10.3390/aerospace7100151 - 20 Oct 2020
Cited by 22 | Viewed by 5085
Abstract
Time Difference of Arrival (TDOA) networks could support spacecraft orbit determination or near-space (launcher and suborbital) vehicle tracking for an increased number of satellite launches and space missions in the near future. The evaluation of the geometry of TDOA networks could involve the [...] Read more.
Time Difference of Arrival (TDOA) networks could support spacecraft orbit determination or near-space (launcher and suborbital) vehicle tracking for an increased number of satellite launches and space missions in the near future. The evaluation of the geometry of TDOA networks could involve the dilution of precision (DOP), but this parameter is related to a single position of the target, while the positioning accuracy of the network with targets in the whole celestial vault should be evaluated. The paper presents the derivation of the MDOP (minimum dilution of precision), a parameter that can be used for evaluating the performance of TDOA networks for spacecraft tracking and orbit determination. The MDOP trend with respect to distance, number of stations and target altitude is reported in the paper, as well as examples of applications for network performance evaluation or time precision requirement definitions. The results show how an increase in the baseline enables the inclusion of more impactive improvements on the MDOP and the mean error than an increase in the number of stations. The target altitude is demonstrated as noninfluential for the MDOP trend, making the networks uniformly applicable to lower altitude (launchers and suborbital vehicles) and higher altitude (Low and Medium Earth Orbits satellites) spacecraft. Full article
(This article belongs to the Special Issue Orbit Determination of Earth Orbiting Objects)
Show Figures

Graphical abstract

21 pages, 1849 KB  
Article
Rapid Morphological and Cytoskeletal Response to Microgravity in Human Primary Macrophages
by Cora Sandra Thiel, Svantje Tauber, Beatrice Lauber, Jennifer Polzer, Christian Seebacher, Rainer Uhl, Srujana Neelam, Ye Zhang, Howard Levine and Oliver Ullrich
Int. J. Mol. Sci. 2019, 20(10), 2402; https://doi.org/10.3390/ijms20102402 - 15 May 2019
Cited by 57 | Viewed by 7884
Abstract
The FLUMIAS (Fluorescence-Microscopic Analyses System for Life-Cell-Imaging in Space) confocal laser spinning disk fluorescence microscope represents a new imaging capability for live cell imaging experiments on suborbital ballistic rocket missions. During the second pioneer mission of this microscope system on the TEXUS-54 suborbital [...] Read more.
The FLUMIAS (Fluorescence-Microscopic Analyses System for Life-Cell-Imaging in Space) confocal laser spinning disk fluorescence microscope represents a new imaging capability for live cell imaging experiments on suborbital ballistic rocket missions. During the second pioneer mission of this microscope system on the TEXUS-54 suborbital rocket flight, we developed and performed a live imaging experiment with primary human macrophages. We simultaneously imaged four different cellular structures (nucleus, cytoplasm, lysosomes, actin cytoskeleton) by using four different live cell dyes (Nuclear Violet, Calcein, LysoBrite, SiR-actin) and laser wavelengths (405, 488, 561, and 642 nm), and investigated the cellular morphology in microgravity (10−4 to 10−5 g) over a period of about six minutes compared to 1 g controls. For live imaging of the cytoskeleton during spaceflight, we combined confocal laser microscopy with the SiR-actin probe, a fluorogenic silicon-rhodamine (SiR) conjugated jasplakinolide probe that binds to F-actin and displays minimal toxicity. We determined changes in 3D cell volume and surface, nuclear volume and in the actin cytoskeleton, which responded rapidly to the microgravity environment with a significant reduction of SiR-actin fluorescence after 4–19 s microgravity, and adapted subsequently until 126–151 s microgravity. We conclude that microgravity induces geometric cellular changes and rapid response and adaptation of the potential gravity-transducing cytoskeleton in primary human macrophages. Full article
(This article belongs to the Special Issue Adaptation of Living Organisms in Space: From Mammals to Plants)
Show Figures

Figure 1

31 pages, 4446 KB  
Article
Expression of Hypoxia-Inducible Factor 1α (HIF-1α) and Genes of Related Pathways in Altered Gravity
by Johannes Vogel, Cora Sandra Thiel, Svantje Tauber, Christian Stockmann, Max Gassmann and Oliver Ullrich
Int. J. Mol. Sci. 2019, 20(2), 436; https://doi.org/10.3390/ijms20020436 - 20 Jan 2019
Cited by 29 | Viewed by 7498
Abstract
Immune system deterioration in space represents a major risk, which has to be mitigated for exploration-class missions into the solar system. Altered gravitational forces have been shown to regulate adaptation processes in cells of the immune system, which are important for appropriate risk [...] Read more.
Immune system deterioration in space represents a major risk, which has to be mitigated for exploration-class missions into the solar system. Altered gravitational forces have been shown to regulate adaptation processes in cells of the immune system, which are important for appropriate risk management, monitoring and development of countermeasures. T lymphocytes and cells of the monocyte-macrophage system are highly migratory cell types that frequently encounter a wide range of oxygen tensions in human tissues and in hypoxic areas, even under homeostatic conditions. Hypoxia-inducible factor 1 and 2 (HIF’s) might have an important role in activation of T cells and cells of the monocyte-macrophages system. Thus, we investigated the regulation of HIF-dependent and, therefore, hypoxia-signaling systems in both cell types in altered gravity and performed transcript and protein analysis from parabolic flight and suborbital ballistic rocket experiments. We found that HIF-1α and HIF-1-dependent transcripts were differently regulated in altered gravity, whereas HIF-1α-dependent gene expression adapted after 5 min microgravity. Inter-platform comparisons identified PDK1 as highly responsive to gravitational changes in human U937 myelomonocytic cells and in Jurkat T cells. We suggest HIF-1 as a potential pharmacological target for counteracting immune system deterioration during space flight. Full article
(This article belongs to the Special Issue Adaptation of Living Organisms in Space: From Mammals to Plants)
Show Figures

Figure 1

Back to TopTop