Genomic, Habitat, and Leaf Shape Analyses Reveal a Possible Cryptic Species and Vulnerability to Climate Change in a Threatened Daisy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species and Sampling
2.2. Study Species and Sampling
2.3. DNA Extraction, Sequencing, and Filtering
2.4. Genetic Structure Analysis
2.5. Kinship, Genetic Diversity, and Inbreeding Analysis
2.6. Leaf Trait Analysis
2.7. Redundancy Analyses—Both Genetic Data and Leaf Variation
2.8. Habitat Suitability Modelling
3. Results
3.1. Genetic Structure Analysis
- The southern Flinders Ranges samples identified by the State Herbarium of South Australia as O. pannosa subsp. cardiophylla (Table A1, Peter Lang, pers. comm.). From here on, we will refer to this group as Olearia (FR).
- Samples from Coulta (COUL) on the Eyre Peninsula to Victor Harbor (VIC) on the Fleurieu Peninsula (excluding the Olearia (FR) specimens collected at Dutchman’s Stern (DUT) and Melrose (MEL)) were mainly identified as O. pannosa subsp. pannosa (State Herbarium of South Australia, P. Lang 2021, personal communication; Table S1). There is evidence of some substructure within this group, with geographically isolated sites Coulta (COUL) and Cummins (CM) on the Eyre Peninsula forming a distinct cluster. Notably, there was some admixture between genetic groups, particularly in the samples collected at Victor Harbor (VIC), which were identified as O. pannosa subsp. cardiophylla (Table A1). From here on this genetic group will be referred to as O. pannosa subsp. pannosa.
3.2. Genetic Diversity, Kinship, and Inbreeding Analysis
3.3. Leaf Trait Analysis
3.4. Environmental Associations
3.5. Habitat Suitability Modelling
4. Discussion
4.1. Genetic Structure, Diversity, Inbreeding, and Kinship
4.2. Leaf Shape and Taxonomy
4.3. Environment Likely Shapes Genotype, Phenotype, and Distribution
4.4. Conservation Importance and Implications for Each Genetic Group
4.4.1. Olearia pannosa (FR)
4.4.2. Olearia pannosa subsp. pannosa
4.4.3. Olearia pannosa subsp. cardiophylla
5. Conclusions
- Olearia (FR)–We suggest a management strategy centred around in-situ threat abatement and disturbance to encourage seedbank recovery, the recovery of genetic diversity through a translocation plan to encourage gene flow between the two isolated stands, and the development of a seed production orchard to supply the seed.
- O. pannosa subsp. pannosa—The main priority is to facilitate gene flow between existing stands or to increase connectivity between them, especially in an arid-to-mesic direction since it appears that maximum temperature is an important agent of selection.
- O. pannosa subsp. cardiophylla—It is likely that the large range disjunction of this group is driving genetic divergence. To develop an appropriate conservation management plan, several knowledge gaps still need to be addressed, particularly to assess the potential for outbreeding depression. Until then, we recommend priority is given to in-situ recovery of genetic diversity.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Region | Collection Locality | Collection ID | Latitude | Longitude | Subspecies (SA Herbarium ID) | Genetic Group | 2018 Census Estimate |
---|---|---|---|---|---|---|---|
Eyre Peninsula | Coulta | COUL | −34.38945 | 135.4347 | O. pannosa subsp. pannosa | O. pannosa subsp. pannosa | 1 |
Cummins | CM | −34.32097 | 135.9643 | O. pannosa subsp. pannosa | O. pannosa subsp. pannosa | 440 | |
Cleeve | CLE | −33.6998 | 136.5024 | O. pannosa subsp. pannosa | O. pannosa subsp. pannosa | 490 | |
Flinders Ranges | Dutchman’s Stern | DUT | −32.30784 | 137.9728 | O. pannosa subsp. cardiophylla | O. pannosa (FR) | 400 |
Quorn | QUO | −32.49042 | 138.0478 | O. pannosa subsp. pannosa | O. pannosa subsp. pannosa | 6300 | |
Melrose | MEL | −32.69477 | 138.1048 | O. pannosa subsp. pannosa | O. pannosa subsp. pannosa | 231 | |
Melrose | MEL | −32.71896 | 138.0935 | O. pannosa subsp. cardiophylla | O. pannosa (FR) | 345 | |
Peterborough | PET | −32.78896 | 138.8835 | O. pannosa subsp. pannosa | O. pannosa subsp. pannosa | 60 | |
Tarcowie | TAR | −34.65343 | 138.8208 | O. pannosa subsp. pannosa | O. pannosa subsp. pannosa | 29 | |
Yorke Peninsula | Moonta | MOO | −34.54376 | 137.7825 | O. pannosa subsp. pannosa | O. pannosa subsp. pannosa | 370 |
Minlaton | MIN | −34.6748 | 137.7199 | O. pannosa subsp. pannosa | O. pannosa subsp. pannosa | 385 | |
Clare Valley/Barossa | Robertstown | ROB | −33.85449 | 139.0413 | O. pannosa subsp. pannosa | O. pannosa subsp. pannosa | 1523 |
Tanunda | TAN | −34.38884 | 138.8028 | O. pannosa subsp. pannosa | O. pannosa subsp. pannosa | 368 | |
Murray River | Mannum | MAN | −34.8747 | 139.2146 | O. pannosa subsp. pannosa | O. pannosa subsp. pannosa | 22 |
Monarto | MON | −35.22497 | 139.0047 | O. pannosa subsp. pannosa | O. pannosa subsp. pannosa | 301 | |
Fleurieu Peninsula | Finniss | FIN | −35.31793 | 138.8836 | O. pannosa subsp. pannosa | O. pannosa subsp. pannosa | 513 |
Victor Harbor | VIC | −35.47631 | 138.7684 | O. pannosa cf. subsp. cardiophylla | O. pannosa subsp. pannosa | 115 | |
Newland Head | NEW | −35.61022 | 138.5018 | O. pannosa cf. subsp. cardiophylla | O. pannosa subsp. cardiophylla | 31 | |
Kangaroo Island | Kingscote | KIN | −35.57406 | 137.576 | O. pannosa cf. subsp. cardiophylla | O. pannosa subsp. cardiophylla | 12 |
Southeast SA | Keith | KEI | −36.14328 | 140.4094 | O. pannosa cf. subsp. cardiophylla | O. pannosa subsp. cardiophylla | 514 |
Naracoorte | NAR | −37.11145 | 140.5361 | O. pannosa cf. subsp. cardiophylla | O. pannosa subsp. cardiophylla | 80 | |
Beachport | BEA | −37.28313 | 139.9409 | O. pannosa cf. subsp. cardiophylla | O. pannosa subsp. cardiophylla | 14 | |
Millicent | MIL | −37.68687 | 140.5147 | O. pannosa cf. subsp. cardiophylla | O. pannosa subsp. cardiophylla | 18 | |
Victoria | Anglesea | ANG | −38.37622 | 144.245 | O. pannosa cf. subsp. cardiophylla | O. pannosa subsp. cardiophylla | Unknown |
Brisbane Ranges | BR | −37.90723 | 144.232 | O. pannosa cf. subsp. cardiophylla | O. pannosa subsp. cardiophylla | Unknown | |
Rushworth | RUS | −36.62514 | 145.1126 | O. pannosa cf. subsp. cardiophylla | O. pannosa subsp. cardiophylla | Unknown |
Collection ID | Genetic Group | Highly Related IndividualsRemoved | n | Variant Sites | HO | HE | F | Kinship |
---|---|---|---|---|---|---|---|---|
COUL | O. pannosa subsp. pannosa | - | 1 | 1379 | --- | --- | --- | --- |
CM | O. pannosa subsp. pannosa | - | 8 | 5635 | 0.174 0.173 to 0.175) | 0.221 (0.220 to 0.222) | 0.213 (0.208 to 0.218) | −0.239 (−0.274 to −0.211) |
CLE | O. pannosa subsp. pannosa | - | 10 | 7479 | 0.218 (0.217 to 0.219) | 0.285 (0.284 to 0.286) | 0.234 (0.231 to 0.237) | −0.308 (−0.328 to −0.280) |
DUT | O. pannosa (FR) | - | 21 | 4612 | 0.17 (0.169 to 0.171) | 0.224 (0.223 to 0.225) | 0.241 (0.238 to 0.244) | −0.216 (−0.231 to −0.202) |
QUO | O. pannosa subsp. pannosa | - | 7 | 6457 | 0.19 (0.189 to 0.191) | 0.254 (0.253 to 0.255) | 0.253 (0.249 to 0.257) | −0.324 (−0.347 to −0.303) |
MEL_2 | O. pannosa subsp. pannosa | - | 3 | 4931 | 0.194 (0.191 to 0.197) | 0.268 (0.265 to 0.271) | 0.276 (0.266 to 0.286) | −0.394 (−0.536 to −0.154) |
MEL_1 | O. pannosa (FR) | - | 6 | 3968 | 0.164 (0.162 to 0.166) | 0.243 (0.241 to 0.245) | 0.325 (0.318 to 0.332) | −0.388 (−0.478 to −0.315) |
PET | O. pannosa subsp. pannosa | - | 6 | 6666 | 0.217 (0.215 to 0.219) | 0.275 (0.273 to 0.277) | 0.211 (0.206 to 0.216) | −0.242 (−0.265 to −0.212) |
TAR | O. pannosa subsp. pannosa | - | 5 | 6468 | 0.22 (0.218 to 0.222) | 0.281 (0.279 to 0.283) | 0.218 (0.212 to 0.224) | −0.264 (−0.301 to −0.204) |
MOO | O. pannosa subsp. pannosa | - | 9 | 7613 | 0.219 (0.218 to 0.220) | 0.293 (0.292 to 0.294) | 0.250 (0.247 to 0.253) | −0.326 (−0.351 to −0.307) |
MIN | O. pannosa subsp. pannosa | - | 8 | 7254 | 0.217 (0.216 to 0.218) | 0.286 (0.285 to 0.287) | 0.241 (0.237 to 0.245) | −0.312 (−0.343 to −0.284) |
ROB | O. pannosa subsp. pannosa | - | 6 | 7337 | 0.231 (0.229 to 0.233) | 0.304 (0.302 to 0.306) | 0.241 (0.236 to 0.246) | −0.307 (−0.326 to −0.292) |
TAN | O. pannosa subsp. pannosa | - | 6 | 7645 | 0.231 (0.229 to 0.233) | 0.317 (0.315 to 0.319) | 0.270 (0.265 to 0.275) | −0.370 (−0.406 to −0.331) |
MAN | O. pannosa subsp. pannosa | - | 3 | 5571 | 0.228 (0.225 to 0.231) | 0.300 (0.297 to 0.303) | 0.240 (0.231 to 0.249) | −0.298 (−0.308 to −0.290) |
MON | O. pannosa subsp. pannosa | - | 8 | 8299 | 0.236 (0.235 to 0.237) | 0.322 (0.321 to 0.323) | 0.268 (0.265 to 0.271) | −0.394 (−0.436 to −0.364) |
FIN | O. pannosa subsp. pannosa | - | 8 | 8224 | 0.245 (0.244 to 0.246) | 0.319 (0.318 to 0.320) | 0.232 (0.229 to 0.235) | −0.295 (−0.320 to −0.271) |
VIC | O. pannosa subsp. cardiophylla | - | 2 | 4694 | 0.232 (0.228 to 0.236) | 0.330 (0.326 to 0.334) | 0.298 (0.286 to 0.310) | −0.476 (−0.476 to −0.476) |
NEW | O. pannosa subsp. cardiophylla | - | 5 | 6485 | 0.224 (0.222 to 0.226) | 0.315 (0.313 to 0.317) | 0.288 (0.282 to 0.294) | −0.499 (−0.692 to −0.338) |
KIN | O. pannosa subsp. cardiophylla | 1 | 2 | 1393 | 0.096 (0.093 to 0.099) | 0.109 (0.106 to 0.112) | 0.117 (0.093 to 0.141) | −0.165 (−0.165 to −0.165) |
KEI | O. pannosa subsp. cardiophylla | - | 8 | 5436 | 0.172 (0.171 to 0.173) | 0.239 (0.238 to 0.240) | 0.279 (0.274 to 0.284) | −0.350 (−0.387 to −0.323) |
NAR | O. pannosa subsp. cardiophylla | - | 3 | 7200 | 0.159 (0.156 to 0.162) | 0.184 (0.181 to 0.187) | 0.137 (0.125 to 0.149) | −0.156 (−0.194 to −0.094) |
BEA | O. pannosa subsp. cardiophylla | - | 4 | 3552 | 0.157 (0.154 to 0.160) | 0.190 (0.187 to 0.193) | 0.174 (0.164 to 0.184) | −0.213 (−0.266 to −0.168) |
MIL | O. pannosa subsp. cardiophylla | - | 4 | 3329 | 0.153 (0.150 to 0.156) | 0.180 (0.177 to 0.183) | 0.148 (0.138 to 0.158) | −0.156 (−0.179 to −0.137) |
ANG | O. pannosa subsp. cardiophylla | 2 | 8 | 2525 | 0.107 (0.106 to 0.108) | 0.113 (0.112 to 0.114) | 0.055 (0.049 to 0.061) | −0.062 (−0.091 to −0.029) |
BR | O. pannosa subsp. cardiophylla | 3 | 7 | 3081 | 0.127 (0.126 to 0.128) | 0.138 (0.137 to 0.139) | 0.078 (0.072 to 0.084) | −0.077 (−0.090 to −0.059) |
RUS | O. pannosa subsp. cardiophylla | - | 11 | 3875 | 0.145 (0.144 to 0.146) | 0.166 (0.165 to 0.167) | 0.127 (0.123 to 0.131) | −0.129 (−0.159 to −0.089) |
COUL | CM | CLE | DUT | QUO | MEL_2 | MEL_1 | PET | TAR | MOO | MIN | ROB | TAN | MAN | MON | FIN | VIC | NEW | KIN | KEI | NAR | BEA | MIL | ANG | BR | RUS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COUL | 0.00 | |||||||||||||||||||||||||
CM | 0.05 | 0.00 | ||||||||||||||||||||||||
CLE | 0.07 | 0.13 | 0.00 | |||||||||||||||||||||||
DUT | 0.63 | 0.58 | 0.49 | 0.00 | ||||||||||||||||||||||
QUO | 0.20 | 0.25 | 0.13 | 0.51 | 0.00 | |||||||||||||||||||||
MEL_2 | 0.19 | 0.27 | 0.13 | 0.52 | 0.07 | 0.00 | ||||||||||||||||||||
MEL_1 | 0.59 | 0.53 | 0.42 | 0.23 | 0.45 | 0.45 | 0.00 | |||||||||||||||||||
PET | 0.17 | 0.22 | 0.10 | 0.52 | 0.09 | 0.10 | 0.45 | 0.00 | ||||||||||||||||||
TAR | 0.16 | 0.21 | 0.09 | 0.52 | 0.09 | 0.09 | 0.45 | 0.06 | 0.00 | |||||||||||||||||
MOO | 0.15 | 0.22 | 0.11 | 0.49 | 0.15 | 0.15 | 0.41 | 0.12 | 0.11 | 0.00 | ||||||||||||||||
MIN | 0.17 | 0.23 | 0.12 | 0.51 | 0.17 | 0.16 | 0.43 | 0.13 | 0.12 | 0.00 | 0.00 | |||||||||||||||
ROB | 0.11 | 0.20 | 0.07 | 0.50 | 0.12 | 0.11 | 0.41 | 0.08 | 0.06 | 0.07 | 0.08 | 0.00 | ||||||||||||||
TAN | 0.09 | 0.20 | 0.07 | 0.48 | 0.12 | 0.10 | 0.39 | 0.08 | 0.06 | 0.06 | 0.07 | 0.01 | 0.00 | |||||||||||||
MAN | 0.14 | 0.25 | 0.10 | 0.54 | 0.16 | 0.13 | 0.46 | 0.11 | 0.09 | 0.09 | 0.10 | 0.05 | 0.03 | 0.00 | ||||||||||||
MON | 0.08 | 0.19 | 0.07 | 0.46 | 0.11 | 0.09 | 0.37 | 0.07 | 0.05 | 0.06 | 0.07 | 0.01 | 0.00 | 0.02 | 0.00 | |||||||||||
FIN | 0.12 | 0.21 | 0.09 | 0.46 | 0.13 | 0.12 | 0.37 | 0.10 | 0.08 | 0.08 | 0.09 | 0.04 | 0.02 | 0.04 | 0.02 | 0.00 | ||||||||||
VIC | 0.11 | 0.30 | 0.15 | 0.55 | 0.21 | 0.17 | 0.46 | 0.16 | 0.14 | 0.12 | 0.13 | 0.08 | 0.04 | 0.07 | 0.03 | 0.03 | 0.00 | |||||||||
NEW | 0.29 | 0.36 | 0.26 | 0.52 | 0.31 | 0.29 | 0.43 | 0.28 | 0.26 | 0.22 | 0.23 | 0.20 | 0.16 | 0.19 | 0.15 | 0.12 | 0.09 | 0.00 | ||||||||
KIN | 0.72 | 0.52 | 0.39 | 0.66 | 0.46 | 0.49 | 0.64 | 0.43 | 0.42 | 0.36 | 0.38 | 0.36 | 0.31 | 0.41 | 0.29 | 0.27 | 0.36 | 0.22 | 0.00 | |||||||
KEI | 0.46 | 0.46 | 0.36 | 0.59 | 0.41 | 0.42 | 0.53 | 0.39 | 0.38 | 0.33 | 0.34 | 0.33 | 0.29 | 0.34 | 0.27 | 0.25 | 0.27 | 0.17 | 0.36 | 0.00 | ||||||
NAR | 0.58 | 0.50 | 0.38 | 0.64 | 0.44 | 0.46 | 0.60 | 0.42 | 0.41 | 0.35 | 0.36 | 0.35 | 0.31 | 0.38 | 0.28 | 0.27 | 0.32 | 0.20 | 0.51 | 0.17 | 0.00 | |||||
BEA | 0.57 | 0.50 | 0.39 | 0.63 | 0.45 | 0.48 | 0.59 | 0.43 | 0.42 | 0.36 | 0.37 | 0.36 | 0.33 | 0.40 | 0.30 | 0.28 | 0.34 | 0.20 | 0.47 | 0.16 | 0.12 | 0.00 | ||||
MIL | 0.59 | 0.51 | 0.40 | 0.64 | 0.46 | 0.49 | 0.60 | 0.44 | 0.43 | 0.37 | 0.38 | 0.37 | 0.33 | 0.41 | 0.31 | 0.28 | 0.35 | 0.22 | 0.50 | 0.18 | 0.16 | 0.12 | 0.00 | |||
ANG | 0.75 | 0.63 | 0.53 | 0.71 | 0.59 | 0.65 | 0.71 | 0.58 | 0.59 | 0.51 | 0.53 | 0.53 | 0.50 | 0.60 | 0.47 | 0.46 | 0.58 | 0.45 | 0.68 | 0.49 | 0.59 | 0.56 | 0.58 | 0.00 | ||
BR | 0.70 | 0.60 | 0.50 | 0.69 | 0.56 | 0.61 | 0.68 | 0.55 | 0.55 | 0.49 | 0.50 | 0.50 | 0.47 | 0.56 | 0.44 | 0.43 | 0.53 | 0.41 | 0.63 | 0.45 | 0.55 | 0.52 | 0.54 | 0.20 | 0.00 | |
RUS | 0.64 | 0.57 | 0.47 | 0.66 | 0.53 | 0.56 | 0.64 | 0.52 | 0.52 | 0.46 | 0.47 | 0.47 | 0.44 | 0.51 | 0.41 | 0.40 | 0.47 | 0.36 | 0.55 | 0.42 | 0.49 | 0.47 | 0.48 | 0.46 | 0.42 | 0.00 |
Collection Locality | Collection ID Individual 1 | Collection Locality | Collection ID Individual 2 | Kinship | Relation |
---|---|---|---|---|---|
KIN | KIN_03 | KIN | KIN_02 | 0.497758 | clone |
BR | BR_04 | BR | BR_02 | 0.265698 | first-degree |
ANG | ANG_02 | ANG | ANG_01 | 0.254376 | first-degree |
ANG | ANG_05 | ANG | ANG_04 | 0.252064 | first-degree |
BR | BR_09 | BR | BR_05 | 0.241582 | first-degree |
RUS | RUS_06 | RUS | RUS_01 | 0.212617 | first-degree |
ANG | ANG_10 | ANG | ANG_09 | 0.169238 | second-degree |
RUS | RUS_11 | RUS | RUS_04 | 0.120962 | second-degree |
ANG | ANG_10 | ANG | ANG_07 | 0.107917 | second-degree |
ANG | ANG_09 | ANG | ANG_07 | 0.103653 | second-degree |
BR | BR_02 | BR | BR_01 | 0.103425 | second-degree |
ANG | ANG_10 | ANG | ANG_06 | 0.102982 | second-degree |
BR | BR_04 | BR | BR_01 | 0.101133 | second-degree |
Group Comparison | diff | lwr | upr | p adj | |
---|---|---|---|---|---|
HO | O. pannosa subsp. cardiophylla—Olearia (FR) | −0.02 | −0.07 | 0.04 | 0.68 |
O. pannosa subsp. pannosa—Olearia (FR) | 0.05 | 0 | 0.1 | 0.05 | |
O. pannosa subsp. pannosa—O. pannosa subsp. cardiophylla | 0.07 | 0.04 | 0.1 | <0.001 | |
HE | O. pannosa subsp. cardiophylla—Olearia (FR) | −0.05 | −0.14 | 0.04 | 0.32 |
O. pannosa subsp. pannosa—Olearia (FR) | 0.06 | −0.03 | 0.14 | 0.25 | |
O. pannosa subsp. pannosa—O. pannosa subsp. cardiophylla | 0.11 | 0.06 | 0.16 | <0.001 | |
F | O. pannosa subsp. cardiophylla—Olearia (FR) | −0.13 | −0.23 | −0.02 | 0.02 |
O. pannosa subsp. pannosa—Olearia (FR) | −0.04 | −0.14 | 0.07 | 0.64 | |
O. pannosa subsp. pannosa—O. pannosa subsp. cardiophylla | 0.09 | 0.03 | 0.15 | <0.001 | |
Kinship | O. pannosa subsp. cardiophylla—Olearia (FR) | 0.10 | −0.10 | 0.30 | 0.42 |
O. pannosa subsp. pannosa—Olearia (FR) | −0.02 | −0.22 | 0.17 | 0.95 | |
O. pannosa subsp. pannosa—O. pannosa subsp. cardiophylla | −0.12 | −0.23 | −0.02 | 0.02 |
Group Comparison | diff | lwr | upr | p adj | |
---|---|---|---|---|---|
PC1 | O. pannosa subsp. cardiophylla—Olearia (FR) | 0.68 | −0.18 | 1.54 | 0.15 |
O. pannosa subsp. pannosa—Olearia (FR) | 2.45 | 1.74 | 1.74 | <0.001 | |
O. pannosa subsp. pannosa—O. pannosa subsp. cardiophylla | 3.13 | 2.42 | 3.84 | <0.001 | |
PC2 | O. pannosa subsp. cardiophylla—Olearia (FR) | 1.94 | 1.33 | 2.56 | <0.001 |
O. pannosa subsp. pannosa—Olearia (FR) | 0.11 | −0.39 | 0.62 | 0.86 | |
O. pannosa subsp. pannosa—O. pannosa subsp. cardiophylla | −1.83 | −2.33 | −1.32 | <0.001 |
References
- Breed, M.F.; Stead, M.G.; Ottewell, K.M.; Gardner, M.G.; Lowe, A.J. Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conserv. Genet. 2013, 14, 1–10. [Google Scholar] [CrossRef]
- Breed, M.F.; Gardner, M.G.; Ottewell, K.; Navarro, C.; Lowe, A.J. Shifts in reproductive assurance strategies and inbreeding costs associated with habitat fragmentation in Central American mahogany. Ecol. Lett. 2012, 15, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Lowe, A.J.; Cavers, S.; Boshier, D.; Breed, M.F.; Hollingsworth, P.M. The resilience of forest fragmentation genetics—No longer a paradox—We were just looking in the wrong place. Heredity 2015, 115, 97–99. [Google Scholar] [CrossRef][Green Version]
- Eckert, C.G.; Kalisz, S.; Geber, M.A.; Sargent, R.; Elle, E.; Cheptou, P.-O.; Goodwillie, C.; Johnston, M.O.; Kelly, J.K.; Moeller, D.A.; et al. Plant mating systems in a changing world. Trends Ecol. Evol. 2010, 25, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Lowe, A.J.; Boshier, D.; Ward, M.; Bacles, C.F.E.; Navarro, C. Genetic resource impacts of habitat loss and degradation; Reconciling empirical evidence and predicted theory for neotropical trees. Heredity 2005, 95, 255–273. [Google Scholar] [CrossRef][Green Version]
- Aitken, S.N.; Yeaman, S.; Holliday, J.A.; Wang, T.; Curtis-McLane, S. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 2008, 1, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Christmas, M.J.; Breed, M.F.; Lowe, A.J. Constraints to and conservation implications for climate change adaptation in plants. Conserv. Genet. 2015, 17, 305–320. [Google Scholar] [CrossRef][Green Version]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Cook, J.; Nuccitelli, D.; Green, S.A.; Richardson, M.; Winkler, B.; Painting, R.; Way, R.; Jacobs, P.; Skuce, A. Quantifying the consensus on anthropogenic global warming in the scientific literature. Environ. Res. Lett. 2013, 8, 024024. [Google Scholar] [CrossRef][Green Version]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef][Green Version]
- Jump, A.; Peñuelas, J. Running to stand still: Adaptation and the response of plants to rapid climate change. Ecol. Lett. 2005, 8, 1010–1020. [Google Scholar] [CrossRef]
- Bongaarts, J. IPBES, Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Wiley Online Library: Hoboken, NJ, USA, 2019. [Google Scholar]
- Corlett, R.T.; Westcott, D.A. Will plant movements keep up with climate change? Trends Ecol. Evol. 2013, 28, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Young, A.; Boyle, T.; Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 1996, 11, 413–418. [Google Scholar] [CrossRef]
- Whiteley, A.R.; Fitzpatrick, S.W.; Funk, W.C.; Tallmon, D.A. Genetic rescue to the rescue. Trends Ecol. Evol. 2015, 30, 42–49. [Google Scholar] [CrossRef]
- Aitken, S.N.; Whitlock, M.C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 367. [Google Scholar] [CrossRef]
- Gellie, N.J.C.; Breed, M.F.; Thurgate, N.; Kennedy, S.A.; Lowe, A.J. Local maladaptation in a foundation tree species: Implications for restoration. Biol. Conserv. 2016, 203, 226–232. [Google Scholar] [CrossRef]
- Prober, S.M.; Byrne, M.; McLean, E.H.; Steane, D.A.; Potts, B.M.; Vaillancourt, R.E.; Stock, W.D. Climate-adjusted provenancing: A strategy for climate-resilient ecological restoration. Front. Ecol. Evol. 2015, 3, 65. [Google Scholar] [CrossRef][Green Version]
- Broadhurst, L.M.; Lowe, A.; Coates, D.J.; Cunningham, S.A.; McDonald, M.; Vesk, P.A.; Yates, C. Seed supply for broadscale restoration: Maximizing evolutionary potential. Evol. Appl. 2008, 1, 587–597. [Google Scholar] [CrossRef]
- Ramalho, C.E.; Byrne, M.; Yates, C.J. A Climate-Oriented Approach to Support Decision-Making for Seed Provenance in Ecological Restoration. Front. Ecol. Evol. 2017, 5, 95. [Google Scholar] [CrossRef][Green Version]
- Bucharova, A.; Bossdorf, O.; Hölzel, N.; Kollmann, J.; Prasse, R.; Durka, W. Mix and match: Regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conserv. Genet. 2019, 20, 7–17. [Google Scholar] [CrossRef]
- Breed, M.F.; Harrison, P.A.; Blyth, C.; Byrne, M.; Gaget, V.; Gellie, N.J.; Groom, S.V.; Hodgson, R.; Mills, J.G.; Prowse, T.A. The potential of genomics for restoring ecosystems and biodiversity. Nat. Rev. Genet. 2019, 20, 615–628. [Google Scholar] [CrossRef]
- Breed, M.; Harrison, P.; Bischoff, A.; Durruty, P.; Gellie, N.; Gonzales, E.; Havens, K.; Kilkenny, F.; Krauss, S.; Lowe, A. Priority actions to improve provenance decision making. Bioscience 2018, 68, 510–516. [Google Scholar] [CrossRef]
- Ledig, F.T.; Rehfeldt, G.E.; Jaquish, B. Projections of suitable habitat under climate change scenarios: Implications for trans-boundary assisted colonization. Am. J. Bot. 2012, 99, 1217–1230. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, C.; Liu, C.; Wan, J.; Zhang, Z. Climate change may threaten habitat suitability of threatened plant species within Chinese nature reserves. PeerJ 2016, 4, e2091. [Google Scholar] [CrossRef][Green Version]
- Vitt, P.; Havens, K.; Kramer, A.T.; Sollenberger, D.; Yates, E. Assisted migration of plants: Changes in latitudes, changes in attitudes. Biol. Conserv. 2010, 143, 18–27. [Google Scholar] [CrossRef]
- Vitt, P.; Havens, K.; Hoegh-Guldberg, O. Assisted migration: Part of an integrated conservation strategy. Trends Ecol. Evol. 2009, 24, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Commander, L.E.; Coates, D.; Broadhurst, L.; Offord, C.A.; Makinson, R.O.; Matthes, M. Guidelines for the Translocation of Threatened Plants in Australia; Australian Network for Plant Conservation Incorporated: Canberra, Australia, 2018. [Google Scholar]
- Lyddiard, D.; Ozga, T.; Greatrex, B.W. Diterpene and flavonoid constituents of the newly identified Australian species Olearia fulgens. Phytochem. Lett. 2020, 39, 19–24. [Google Scholar] [CrossRef]
- Cross, E.W.; Quinn, C.J.; Wagstaff, S.J. Molecular evidence for the polyphyly of Olearia (Astereae: Asteraceae). Plant Syst. Evol. 2002, 235, 99–120. [Google Scholar] [CrossRef]
- Messina, A.; Walsh, N.G.; Hoebee, S.E.; Green, P.T. A morphological assessment of the Olearia phlogopappa complex (Asteraceae: Astereae). Aust. Syst. Bot. 2013, 26, 31–80. [Google Scholar] [CrossRef]
- Messina, A.; Walsh, N.G.; Hoebee, S.E.; Green, P.T. A revision of Olearia section Asterotriche (Asteraceae: Astereae). Aust. Syst. Bot. 2014, 27, 199–240. [Google Scholar] [CrossRef]
- Walsh, N.G. Notes on Olearia (Asteraceae: Astereae) in south-east Australia: O. tenuifolia, O. adenophora and description of a new species endemic to eastern Victoria. Muelleria 2014, 32, 34–38. [Google Scholar]
- Smith, Z.; James, E.A.; Ladiges, P.Y. Morphological and genetic variation in the rare daisy Olearia pannosa subsp. cardiophylla (Asteraceae). Muelleria 2004, 20, 33–48. [Google Scholar]
- Hurren, A.; Breed, M.; Blyth, C.; Mason, A.; Cleeves, R.; Lowe, A.; Bickerton, D. Community action across South Australia to secure the future of the Silver Daisy bush in a changing climate. Australas. Plant Conserv. 2019, 27, 8–10. [Google Scholar]
- EPBC Act 1999. Environmental Protection and Biodiversity Conservation Act; Commonwealth Government of Australia: Canberra, Australia, 1999.
- Parliament of South Australia. National Parks and Wildlife Act; Parliament of South Australia: Adelaide, SA, Australia, 2014.
- Department of Environment and Primary Industries. Advisory list of rare or threatened plants in Victoria—2014; Department of Environment and Primary Industries: East Melbourne, VIC, Australia, 2014.
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef][Green Version]
- Catchen, J.M.; Amores, A.; Hohenlohe, P.; Cresko, W.; Postlethwait, J.H. Stacks: Building and genotyping loci de novo from short-read sequences. G3 Genes Genom. Genet. 2011, 1, 171–182. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Catchen, J.M.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef][Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef][Green Version]
- Meirmans, P.G.; van Tienderen, P.H. GENOTYPE and GENODIVE: Two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 2004, 4, 792–794. [Google Scholar] [CrossRef]
- Meirmans, P.G. GENODIVE version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Res. 2020, 20, 1126–1131. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shafer, A.; Peart, C.R.; Tusso, S.; Maayan, I.; Brelsford, A.; Wheat, C.W.; Wolf, J.B. Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol. Evol. 2016, 8, 907–917. [Google Scholar] [CrossRef]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rosenberg, N.A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Res. 2015, 15, 1179–1191. [Google Scholar] [CrossRef][Green Version]
- Pembleton, L.W.; Cogan, N.O.; Forster, J.W. St AMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Res. 2013, 13, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H. SplitsTree: Analyzing and visualizing evolutionary data. Bioinformatics 1998, 14, 68–73. [Google Scholar] [CrossRef]
- Dutheil, J.Y. Statistical Population Genomics; Springer Nature: Basingstoke, UK, 2020. [Google Scholar]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing Website: Vienna, Austria, 2020. [Google Scholar]
- Lowe, A.J.; Abbott, R.J. Origins of the new allopolyploid species Senecio cambrensis (asteraceae) and its relationship to the Canary Islands endemic Senecio teneriffae. Am. J. Bot. 1996, 83, 1365–1372. [Google Scholar] [CrossRef]
- Rasband, W.S.; ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA. 1997−2018. Available online: https://imagej.nih.gov/ij/ (accessed on 11 June 2021).
- Grundy, M.; Rossel, R.V.; Searle, R.; Wilson, P.; Chen, C.; Gregory, L. Soil and landscape grid of Australia. Soil Res. 2015, 53, 835–844. [Google Scholar] [CrossRef]
- Harwood, T.; Donohue, R.; Harman, I.; McVicar, T.; Ota, N.; Perry, J.; Williams, K.; CSIRO. 9s Climatology for Continental Australia 1976–2005: Summary Variables with Elevation and Radiative Adjustment. v1; Data Collection; CSIRO: Canberra, Australia, 2016. [Google Scholar]
- Gallant, J.; Austin, J.; Williams, K.; Harwood, T.; King, D.; Nolan, M.; Mokany, K.; CSIRO. 9s Soil and Landform for Continental Australia Analysis of Biodiversity Pattern: Aggregated from 3s Data. v1; Data Collection; CSIRO: Canberra, Australia, 2018. [Google Scholar]
- Robert, J.H. raster: Geographic Data Analysis and Modeling. R package version 3.4-10. Available online: https://CRAN.R-project.org/package=raster (accessed on 11 June 2021).
- Oksanen, A.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; Hara, R.; Simpson, G. vegan: Community Ecology Package. R package version 2.3-2. Available online: https://CRAN.R-project.org/package=vegan (accessed on 11 June 2021).
- Hallgren, W.; Beaumont, L.; Bowness, A.; Chambers, L.; Graham, E.; Holewa, H.; Laffan, S.; Mackey, B.; Nix, H.; Price, J. The biodiversity and climate change virtual laboratory: Where ecology meets big data. Environ. Model Softw. 2016, 76, 182–186. [Google Scholar] [CrossRef][Green Version]
- Jeremy James, V. All Future Climate Layers for Australia—5km Resolution; James Cook University: Townsville, Australia, 2012. [Google Scholar]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Diver. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Miller, A.D.; Nitschke, C.; Weeks, A.R.; Weatherly, W.L.; Heyes, S.D.; Sinclair, S.J.; Holland, O.J.; Stevenson, A.; Broadhurst, L.; Hoebee, S.E. Genetic data and climate niche suitability models highlight the vulnerability of a functionally important plant species from south-eastern Australia. Evol. App. 2020, 13, 2014–2029. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Blyth, C.; Christmas, M.J.; Bickerton, D.C.; Faast, R.; Packer, J.G.; Lowe, A.J.; Breed, M.F. Increased Genetic Diversity via Gene Flow Provides Hope for Acacia whibleyana, an Endangered Wattle Facing Extinction. Diversity 2020, 12, 299. [Google Scholar] [CrossRef]
- Rodger, Y.S.; Pavlova, A.; Sinclair, S.; Pickup, M.; Sunnucks, P. Evolutionary history and genetic connectivity across highly fragmented populations of an endangered daisy. Heredity 2021, 126, 846–858. [Google Scholar] [CrossRef] [PubMed]
- Silvertown, J. The evolutionary maintenance of sexual reproduction: Evidence from the ecological distribution of asexual reproduction in clonal plants. Int. J. Plant Sci. 2008, 169, 157–168. [Google Scholar] [CrossRef][Green Version]
- Hu, A.Q.; Gale, S.W.; Kumar, P.; Saunders, R.M.; Sun, M.; Fischer, G.A. Preponderance of clonality triggers loss of sex in Bulbophyllum bicolor, an obligately outcrossing epiphytic orchid. Mol. Ecol. 2017, 26, 3358–3372. [Google Scholar] [CrossRef]
- Carstens, B.C.; Satler, J.D. The carnivorous plant described as Sarracenia alata contains two cryptic species. Biol. J. Linn. Soc. 2013, 109, 737–746. [Google Scholar] [CrossRef][Green Version]
- Bell, D.; Long, D.G.; Forrest, A.D.; Hollingsworth, M.L.; Blom, H.H.; Hollingsworth, P.M. DNA barcoding of European Herbertus (Marchantiopsida, Herbertaceae) and the discovery and description of a new species. Mol. Ecol. Res. 2012, 12, 36–47. [Google Scholar] [CrossRef]
- Dauphin, B.; Vieu, J.; Grant, J.R. Molecular phylogenetics supports widespread cryptic species in moonworts (Botrychium ss, Ophioglossaceae). Am. J. Bot. 2014, 101, 128–140. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Van Rossum, F.; Martin, H.; Le Cadre, S.; Brachi, B.; Christenhusz, M.J.; Touzet, P. Phylogeography of a widely distributed species reveals a cryptic assemblage of distinct genetic lineages needing separate conservation strategies. Perspect. Plant Ecol. Evol. Syst. 2018, 35, 44–51. [Google Scholar] [CrossRef]
- Whittall, J.B.; Hellquist, C.B.; Schneider, E.L.; Hodges, S.A. Cryptic species in an endangered pondweed community (Potamogeton, Potamogetonaceae) revealed by AFLP markers. Am. J. Bot. 2004, 91, 2022–2029. [Google Scholar] [CrossRef]
- Christmas, M.J.; Jones, J.C.; Olsson, A.; Wallerman, O.; Bunikis, I.; Kierczak, M.; Peona, V.; Whitley, K.M.; Larva, T.; Suh, A. Genetic barriers to historical gene flow between cryptic species of alpine bumblebees revealed by comparative population genomics. Mol. Biol. Evol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.E.; Tessier, B.C.; Swift, J.F.; Bassüner, B.; Linan, A.G.; Albrecht, M.A.; Yatskievych, G.A. Conservation genetics of the threatened plant species Physaria filiformis (Missouri bladderpod) reveals strong genetic structure and a possible cryptic species. PLoS ONE 2021, 16, e0247586. [Google Scholar] [CrossRef] [PubMed]
- Abeyrama, D.K.; Dempsey, Z.W.; Ryan, P.G.; Burg, T.M. Cryptic speciation and population differentiation in the yellow-nosed albatross species complex. Conserv. Genet. 2021, 1–10. [Google Scholar] [CrossRef]
- Bickford, D.; Lohman, D.J.; Sodhi, N.S.; Ng, P.K.; Meier, R.; Winker, K.; Ingram, K.K.; Das, I. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 2007, 22, 148–155. [Google Scholar] [CrossRef]
- Vitorino, L.C.; Reis, M.N.O.; Bessa, L.A.; Souza, U.J.B.D.; Silva, F.G. Landscape and Climate Influence the Patterns of Genetic Diversity and Inbreeding in Cerrado Plant Species. Diversity 2020, 12, 421. [Google Scholar] [CrossRef]
- Chala, D.; Brochmann, C.; Psomas, A.; Ehrich, D.; Gizaw, A.; Masao, C.A.; Bakkestuen, V.; Zimmermann, N.E. Good-bye to tropical alpine plant giants under warmer climates? Loss of range and genetic diversity in Lobelia rhynchopetalum. Ecol. Evol. 2016, 6, 8931–8941. [Google Scholar] [CrossRef] [PubMed]
- Ortego, J.; Riordan, E.C.; Gugger, P.F.; Sork, V.L. Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Mol. Ecol. 2012, 21, 3210–3223. [Google Scholar] [CrossRef]
- Riordan, E.C.; Gugger, P.F.; Ortego, J.; Smith, C.; Gaddis, K.; Thompson, P.; Sork, V.L. Association of genetic and phenotypic variability with geography and climate in three southern California oaks. Am. J. Bot. 2016, 103, 73–85. [Google Scholar] [CrossRef][Green Version]
- Christmas, M.J.; Biffin, E.; Breed, M.F.; Lowe, A.J. Finding needles in a genomic haystack: Targeted capture identifies clear signatures of selection in a nonmodel plant species. Mol. Ecol. 2016, 25, 4216–4233. [Google Scholar] [CrossRef]
- Guerin, G.R.; Wen, H.; Lowe, A.J. Leaf morphology shift linked to climate change. Biol. Lett. 2012, 8, 882–886. [Google Scholar] [CrossRef]
- Baruch, Z.; Christmas, M.J.; Breed, M.F.; Guerin, G.R.; Caddy-Retalic, S.; McDonald, J.; Jardine, D.I.; Leitch, E.; Gellie, N.; Hill, K. Leaf trait associations with environmental variation in the wide-ranging shrub Dodonaea viscosa subsp. angustissima (Sapindaceae). Austral Ecol. 2016, 42, 553–561. [Google Scholar] [CrossRef][Green Version]
- Hill, K.E.; Guerin, G.R.; Hill, R.S.; Watling, J.R. Temperature influences stomatal density and maximum potential water loss through stomata of Dodonaea viscosa subsp. angustissima along a latitude gradient in southern Australia. Aust. J. Bot. 2015, 62, 657–665. [Google Scholar] [CrossRef][Green Version]
- Wright, I.J.; Dong, N.; Maire, V.; Prentice, I.C.; Westoby, M.; Díaz, S.; Gallagher, R.V.; Jacobs, B.F.; Kooyman, R.; Law, E.A. Global climatic drivers of leaf size. Science 2017, 357, 917–921. [Google Scholar] [CrossRef][Green Version]
- Meier, I.C.; Leuschner, C. Leaf size and leaf area index in Fagus sylvatica forests: Competing effects of precipitation, temperature, and nitrogen availability. Ecosystems 2008, 11, 655–669. [Google Scholar] [CrossRef][Green Version]
- Guerin, G.R.; Andersen, A.N.; Rossetto, M.; van Leeuwen, S.; Byrne, M.; Sparrow, B.; Rodrigo, M.; Lowe, A.J. Consistent sorting but contrasting transition zones in plant communities along bioclimatic gradients. Acta Oecol. 2019, 95, 74–85. [Google Scholar] [CrossRef]
- Ottewell, K.M.; Bickerton, D.C.; Byrne, M.; Lowe, A.J. Bridging the gap: A genetic assessment framework for population-level threatened plant conservation prioritization and decision-making. Divers. Distrib. 2016, 22, 174–188. [Google Scholar] [CrossRef][Green Version]
- Nevill, P.G.; Tomlinson, S.; Elliott, C.P.; Espeland, E.K.; Dixon, K.W.; Merritt, D.J. Seed production areas for the global restoration challenge. Ecol. Evol. 2016, 6, 7490–7497. [Google Scholar] [CrossRef] [PubMed]
(a) All collection localities | |||||||
Source of variation | Nested in | %var | F | Std.Dev. | c.i.2.5% | c.i.97.5% | p |
Within individual | -- | 42.7 | 0.573 | 0.002 | 0.569 | 0.578 | -- |
Among individuals | Collection locality | 11.2 | 0.208 | 0.003 | 0.203 | 0.213 | <0.001 |
Among collection localities | group | 16.2 | 0.231 | 0.001 | 0.228 | 0.234 | <0.001 |
Among group | -- | 29.9 | 0.299 | 0.002 | 0.294 | 0.304 | <0.001 |
(b) Olearia pannosa subsp. pannosa only | |||||||
Source of variation | Nested in | %var | F | Std.Dev. | c.i.2.5% | c.i.97.5% | p |
Within individual | -- | 67.8 | 0.322 | 0.002 | 0.317 | 0.327 | -- |
Among individuals | Collection locality | 21.3 | 0.239 | 0.003 | 0.234 | 0.244 | <0.001 |
Among collection localities | -- | 10.9 | 0.109 | 0.001 | 0.107 | 0.111 | <0.001 |
(c) Olearia pannosa subsp. cardiophylla only | |||||||
Source of variation | Nested in | %var | F | Std.Dev. | c.i.2.5% | c.i.97.5% | p |
Within individual | -- | 48.2 | 0.518 | 0.003 | 0.512 | 0.525 | -- |
Among individuals | Collection locality | 8.6 | 0.152 | 0.004 | 0.144 | 0.16 | <0.001 |
Among collection localities | -- | 43.2 | 0.432 | 0.003 | 0.427 | 0.438 | <0.001 |
Response Variable | Explanatory Variables | Condition Variables | r2 | F | p |
---|---|---|---|---|---|
Allele frequencies | Space | - | 0.36 | 2.59 | <0.001 |
Environment | Space | 0.11 | 1.64 | 0.038 | |
Leaf shape | Space | - | 0.13 | 5.12 | 0.002 |
Environment | Space | 0.03 | 2.13 | 0.086 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blyth, C.; Christmas, M.J.; Bickerton, D.C.; Breed, M.F.; Foster, N.R.; Guerin, G.R.; Mason, A.R.G.; Lowe, A.J. Genomic, Habitat, and Leaf Shape Analyses Reveal a Possible Cryptic Species and Vulnerability to Climate Change in a Threatened Daisy. Life 2021, 11, 553. https://doi.org/10.3390/life11060553
Blyth C, Christmas MJ, Bickerton DC, Breed MF, Foster NR, Guerin GR, Mason ARG, Lowe AJ. Genomic, Habitat, and Leaf Shape Analyses Reveal a Possible Cryptic Species and Vulnerability to Climate Change in a Threatened Daisy. Life. 2021; 11(6):553. https://doi.org/10.3390/life11060553
Chicago/Turabian StyleBlyth, Colette, Matthew J. Christmas, Douglas C. Bickerton, Martin F. Breed, Nicole R. Foster, Greg R. Guerin, Alex R. G. Mason, and Andrew J. Lowe. 2021. "Genomic, Habitat, and Leaf Shape Analyses Reveal a Possible Cryptic Species and Vulnerability to Climate Change in a Threatened Daisy" Life 11, no. 6: 553. https://doi.org/10.3390/life11060553