Analysis of the Innovation Trend in Cell-Free Synthetic Biology
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patent and Publication Counts Are Trending Positively from 2010 to Present
3.2. Patents and Publications Are Increasing across a Broad Range of Sub-Topics
3.3. Volatility in Patent Filings Is Driven by Commercial Entities
3.4. Advances in Cell-Free Synthetic Biology Continue to Expand Industrial Applications
3.5. Recent Increase in the Number of Patents and Publications Are Driven by the United States, Europe, and China
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nirenberg, M.W.; Matthaei, J.H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Natl. Acad. Sci. USA 1961, 47, 1588–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y. Cell-free synthetic biology: Engineering in an open world. Synth. Syst. Biotechnol. 2017, 2, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y. Advances in Cell-Free Biosynthetic Technology. In Current Developments in Biotechnology and Bioengineering; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 23–45. [Google Scholar]
- Carlson, E.D.; Gan, R.; Hodgman, C.E.; Jewett, M.C. Cell-free protein synthesis: Applications come of age. Biotechnol. Adv. 2012, 30, 1185–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverman, A.D.; Karim, A.S.; Jewett, M.C. Cell-free gene expression: An expanded repertoire of applications. Nat. Rev. Genet. 2019, 21, 151–170. [Google Scholar] [CrossRef] [PubMed]
- Hershewe, J.; Kightlinger, W.; Jewett, M.C. Cell-free systems for accelerating glycoprotein expression and biomanufacturing. J. Ind. Microbiol. Biotechnol. 2020, 47, 977–991. [Google Scholar] [CrossRef]
- Rasor, B.J.; Vögeli, B.; Landwehr, G.M.; Bogart, J.W.; Karim, A.S.; Jewett, M.C. Toward sustainable, cell-free biomanufacturing. Curr. Opin. Biotechnol. 2021, 69, 136–144. [Google Scholar] [CrossRef]
- Thavarajah, W.; Verosloff, M.S.; Jung, J.K.; Alam, K.K.; Miller, J.D.; Jewett, M.C.; Young, S.L.; Lucks, J.B. A primer on emerging field-deployable synthetic biology tools for global water quality monitoring. NPJ Clean Water 2020, 3. [Google Scholar] [CrossRef] [Green Version]
- Borkowski, O.; Koch, M.; Zettor, A.; Pandi, A.; Batista, A.C. Large scale active-learning-guided exploration to maximize cell-free production. bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Villarreal, F.; Weyers, B.; Ding, Y.; Tseng, K.H.; Li, J.; Li, B.; Tan, C.; Pan, T. Multi-dimensional studies of synthetic genetic promoters enabled by microfluidic impact printing. Lab Chip 2017, 17, 2198–2207. [Google Scholar] [CrossRef]
- Yu, W.E.I.; Sato, K.; Wakabayashi, M.; Nakaishi, T.; Ko-Mitamura, E.P.; Shima, Y.; Urabe, I.; Yomo, T. Synthesis of functional protein in liposome. J. Biosci. Bioeng. 2001, 92, 590–593. [Google Scholar] [CrossRef]
- Gregorio, N.E.; Levine, M.Z.; Oza, J.P. A user’s guide to cell-free protein synthesis. Methods Protoc. 2019, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Soye, B.D.; Gerbasi, V.R.; Thomas, P.M.; Kelleher, N.L.; Jewett, M.C. A Highly Productive, One-Pot Cell-Free Protein Synthesis Platform Based on Genomically Recoded Escherichia coli. Cell Chem. Biol. 2019, 26, 1743–1754.e9. [Google Scholar] [CrossRef]
- Jaroentomeechai, T.; Stark, J.; Natarajan, A.; Glasscock, C.J.; Yates, L.E.; Hsu, K.J.; Mrksich, M.; Jewett, M.C.; Delisa, M.P. Single-pot glycoprotein biosynthesis using a cell-free transcription-translation system enriched with glycosylation machinery. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.W.; Soye, B.D.; Kwon, Y.-C.; Kay, J.; Davis, R.G.; Thomas, P.M.; Majewska, N.; Chen, C.X.; Marcum, R.; Weiss, M.G.; et al. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kightlinger, W.; Duncker, K.E.; Ramesh, A.; Thames, A.H.; Natarajan, A.; Stark, J.C.; Yang, A.; Lin, L.; Mrksich, M.; Delisa, M.P.; et al. A cell-free biosynthesis platform for modular construction of protein glycosylation pathways. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Stark, J.C.; Jaroentomeechai, T.; Moeller, T.D.; Hershewe, J.M.; Warfel, K.F.; Moricz, B.S.; Martini, A.M.; Dubner, R.S.; Hsu, K.J.; Stevenson, T.C.; et al. On-demand biomanufacturing of protective conjugate vaccines. Sci. Adv. 2021, 7, eabe9444. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-C.; Jewett, M.C. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci. Rep. 2015, 5, 8663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverman, A.D.; Kelley-Loughnane, N.; Lucks, J.B.; Jewett, M.C. Deconstructing Cell-Free Extract Preparation forin VitroActivation of Transcriptional Genetic Circuitry. ACS Synth. Biol. 2019, 8, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Chong, S. Overview of Cell-Free Protein Synthesis: Historic Landmarks, Commercial Systems, and Expanding Applications. Curr. Protoc. Mol. Biol. 2014, 108, 16.30.1–16.30.11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.K.; Alam, K.K.; Verosloff, M.S.; Capdevila, D.A.; Desmau, M.; Clauer, P.R.; Lee, J.W.; Nguyen, P.Q.; Pastén, P.A.; Matiasek, S.J.; et al. Cell-free biosensors for rapid detection of water contaminants. Nat. Biotechnol. 2020, 38, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.S.; Dudley, Q.M.; Juminaga, A.; Yuan, Y.; Crowe, S.A.; Heggestad, J.T.; Garg, S.; Abdalla, T.; Grubbe, W.S.; Rasor, B.J.; et al. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nat. Chem. Biol. 2020, 16, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Jewett, M.; Stark, J.C.; Delisa, M.P.; Jaroentomeechai, T. Bioconjugate Vaccines’ Synthesis in Prokaryotic Cell Lysates. WO2020146814, 16 July 2020. [Google Scholar]
- Villarreal, F.; Tan, C. Cell-free systems in the new age of synthetic biology. Front. Chem. Sci. Eng. 2017, 11, 58–65. [Google Scholar] [CrossRef]
- Wu, L.; Wang, D.; Evans, J.A. Large teams develop and small teams disrupt science and technology. Nat. Cell Biol. 2019, 566, 378–382. [Google Scholar] [CrossRef]
- World Intellectual Property Organization’s (WIPO). Patentscope Search Engine Cross-Lingual Expansion Search. Available online: https://patentscope.wipo.int/search/en/clir/clir.jsf (accessed on 25 January 2021).
- Scopus Literature Search Engine. Available online: https://www.scopus.com/ (accessed on 25 January 2021).
- Khalil, A.S.; Collins, J.J. Synthetic biology: Applications come of age. Nat. Rev. Genet. 2010, 11, 367–379. [Google Scholar] [CrossRef]
- Yanan, L.Y.; Xu, W.; Kou, X.; Luo, Y.; Zhang, Y.; Ma, B.; Wang, M.; Huang, K. Establishment and Application of Wheat Germ Cell-Free Protein Synthesis System for High Level Expression of Snake Venom Kininogenase. CN85352572, 17 October 2012. [Google Scholar]
- Mikako, S.; Alexander, T.; Shigeyuki, Y. Protein Synthesis System Using Xenopus Oocyte Extract. US41044038, 3 November 2015. [Google Scholar]
- Isoken, A.; Swartz, J.R. Cell-Free Polypeptide Synthesis. US95557732, 26 April 2013. [Google Scholar]
- Swartz, J.; Kim, D.-M. Enhanced In Vitro Synthesis of Active Proteins Containing Disulfide Bonds. WO2002020818, 14 March 2002. [Google Scholar]
- Jewett, M.C.; Kightlinger, W.K. Platform for Producing Glycoproteins, Identifying Glycosylation Pathways. WO2020167455, 20 August 2020. [Google Scholar]
- Jerzy, O.; Edyta, K.-O.; Mamaev, S.; Rothschild, K. Methods for the Preparation of Chemically Misaminoacylated Trna Via Protective Groups. EP14207019, 03 November 2004. [Google Scholar]
- Rahimi, N. Therapeutic and Research Application of Pdcl3. WO2016044219, 24 March 2016. [Google Scholar]
- Takuya, U. Synthesis Method of Membrane Protein by In Vitro Reconstituted Protein Synthesis System. JP272560468, 29 September 2011. [Google Scholar]
- Ichiki, T.; Ueno, S.; Osawa, H. Method of Manufacturing Protein Array or Peptide Array, Method of Identifying Functional Protein or Functional Peptide, Protein Array or Peptide Array, and Functional Protein or Functional Peptide Identification Kit. US212401969, 15 February 2018. [Google Scholar]
- Jewett, M.C.; Lucks, J.B.; Silverman, A.D.; Alam, K.K. ON Demand, Portable, Cell-Free Molecular Sensing Platform. WO2020072127, 9 April 2020. [Google Scholar]
- Zawada, J.F.; Yin, G.; Steiner, A.R.; Yang, J.; Naresh, A.; Roy, S.M.; Gold, D.S.; Heinsohn, H.G.; Murray, C.J. Microscale to manufacturing scale-up of cell-free cytokine production—a new approach for shortening protein production development timelines. Biotechnol. Bioeng. 2011, 108, 1570–1578. [Google Scholar] [CrossRef] [Green Version]
- Khambhati, K.; Bhattacharjee, G.; Gohil, N.; Braddick, D.; Kulkarni, V.; Singh, V. Exploring the Potential of Cell-Free Protein Synthesis for Extending the Abilities of Biological Systems. Front. Bioeng. Biotechnol. 2019, 7, 1–16. [Google Scholar] [CrossRef]
- Pardee, K.; Slomovic, S.; Nguyen, P.; Lee, J.W.; Donghia, N.; Burrill, D.; Ferrante, T.; McSorley, F.R.; Furuta, Y.; Vernet, A.; et al. Portable, On-Demand Biomolecular Manufacturing. Cell 2016, 167, 248–259.e12. [Google Scholar] [CrossRef] [Green Version]
- Pardee, K.; Green, A.; Takahashi, M.K.; Braff, D.; Lambert, G.; Lee, J.W.; Ferrante, T.; Ma, D.; Donghia, N.; Fan, M.; et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell 2016, 165, 1255–1266. [Google Scholar] [CrossRef] [Green Version]
- Stark, J.C.; Huang, A.; Nguyen, P.Q.; Dubner, R.S.; Hsu, K.J.; Ferrante, T.C. BioBitsTM Bright: A fluorescent synthetic biology education kit. Sci. Adv. 2018, 4, eaat5107. [Google Scholar] [CrossRef]
- Williams, L.C.; Gregorio, N.E.; So, B.; Kao, W.Y.; Kiste, A.; Patel, P.A.; Watts, K.R.; Oza, J.P. The Genetic Code Kit: An Open-Source Cell-Free Platform for Biochemical and Biotechnology Education. Front. Bioeng. Biotechnol. 2020, 8, 1–13. [Google Scholar] [CrossRef]
- Bowie, J.U.; Sherkhanov, S.; Korman, T.P.; Valliere, M.A.; Opgenorth, P.H.; Liu, H. Synthetic Biochemistry: The Bio-inspired Cell-Free Approach to Commodity Chemical Production. Trends Biotechnol. 2020, 38, 766–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogart, J.W.; Cabezas, M.D.; Vögeli, B.; Wong, D.A.; Karim, A.S.; Jewett, M.C. Cell-Free Exploration of the Natural Product Chemical Space. ChemBioChem 2021, 22, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Kelwick, R.J.R.; Webb, A.J.; Freemont, P.S. Biological Materials: The Next Frontier for Cell-Free Synthetic Biology. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef]
- Llano, L.E.C.; Tan, C. High-throughput screening of biomolecules using cell-free gene expression systems. Synth. Biol. 2018, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.-C.; Lee, K.-H.; Kim, H.-C.; Han, K.; Seo, J.-H.; Kim, B.-G.; Kim, D.-M. Cloning-Independent Expression and Analysis of ω-Transaminases by Use of a Cell-Free Protein Synthesis System. Appl. Environ. Microbiol. 2010, 76, 6295–6298. [Google Scholar] [CrossRef] [Green Version]
- Cole, S.D.; Beabout, K.; Turner, K.B.; Smith, Z.K.; Funk, V.L.; Harbaugh, S.V.; Liem, A.T.; Roth, P.A.; Geier, B.A.; Emanuel, P.A.; et al. Quantification of Interlaboratory Cell-Free Protein Synthesis Variability. ACS Synth. Biol. 2019, 8, 2080–2091. [Google Scholar] [CrossRef]
- Contreras-Llano, L.E.; Meyer, C.; Liu, Y.; Sarker, M.; Lim, S.; Longo, M.L.; Tan, C. Holistic engineering of cell-free systems through proteome-reprogramming synthetic circuits. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hammerling, M.J.; Krüger, A.; Jewett, M.C. Strategies for in vitro engineering of the translation machinery. Nucleic Acids Res. 2020, 48, 1068–1083. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Schwieter, K.E.; Watkins, A.M.; Kim, D.S.; Yu, H.; Schwarz, K.J.; Lim, J.; Coronado, J.; Byrom, M.; Anslyn, E.V.; et al. Expanding the limits of the second genetic code with ribozymes. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Torres, R.; Kim, D.S.; Byrom, M.; Ellington, A.D.; Jewett, M.C. Ribosomal incorporation of cyclic β-amino acids into peptides using in vitro translation. Chem. Commun. 2020, 56, 5597–5600. [Google Scholar] [CrossRef]
- Lee, J.; Schwarz, K.J.; Kim, D.S.; Moore, J.S.; Jewett, M.C. Ribosome-mediated polymerization of long chain carbon and cyclic amino acids into peptides in vitro. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Nguyen, P.Q.; Stark, J.C.; Takahashi, M.K.; Donghia, N.; Ferrante, T.; Dy, A.J.; Hsu, K.J.; Dubner, R.S.; Pardee, K.; et al. BiobitsTM explorer: A modular synthetic biology education kit. Sci. Adv. 2018, 4, eaat5105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stark, J.C.; Huang, A.; Hsu, K.J.; Dubner, R.S.; Forbrook, J.; Marshalla, S.; Rodriguez, F.; Washington, M.; Rybnicky, G.A.; Nguyen, P.; et al. BioBits Health: Classroom Activities Exploring Engineering, Biology, and Human Health with Fluorescent Readouts. ACS Synth. Biol. 2019, 8, 1001–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, C.; Nakamura, Y.; Rasor, B.J.; Karim, A.S.; Jewett, M.C.; Tan, C. Analysis of the Innovation Trend in Cell-Free Synthetic Biology. Life 2021, 11, 551. https://doi.org/10.3390/life11060551
Meyer C, Nakamura Y, Rasor BJ, Karim AS, Jewett MC, Tan C. Analysis of the Innovation Trend in Cell-Free Synthetic Biology. Life. 2021; 11(6):551. https://doi.org/10.3390/life11060551
Chicago/Turabian StyleMeyer, Conary, Yusuke Nakamura, Blake J. Rasor, Ashty S. Karim, Michael C. Jewett, and Cheemeng Tan. 2021. "Analysis of the Innovation Trend in Cell-Free Synthetic Biology" Life 11, no. 6: 551. https://doi.org/10.3390/life11060551