Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,845)

Search Parameters:
Keywords = transcription and translation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 1221 KiB  
Review
Unmasking Pediatric Asthma: Epigenetic Fingerprints and Markers of Respiratory Infections
by Alessandra Pandolfo, Rosalia Paola Gagliardo, Valentina Lazzara, Andrea Perri, Velia Malizia, Giuliana Ferrante, Amelia Licari, Stefania La Grutta and Giusy Daniela Albano
Int. J. Mol. Sci. 2025, 26(15), 7629; https://doi.org/10.3390/ijms26157629 - 6 Aug 2025
Abstract
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation [...] Read more.
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation of inflammatory pathways contributing to asthma phenotypes and endotypes. This review examines the role of respiratory viruses such as respiratory syncytial virus (RSV), rhinovirus (RV), and other bacterial and fungal infections that are mediators of infection-induced epithelial inflammation that drive epithelial homeostatic imbalance and induce persistent epigenetic alterations. These alterations lead to immune dysregulation, remodeling of the airways, and resistance to corticosteroids. A focused analysis of T2-high and T2-low asthma endotypes highlights unique epigenetic landscapes directing cytokines and cellular recruitment and thereby supports phenotype-specific aspects of disease pathogenesis. Additionally, this review also considers the role of miRNAs in the control of post-transcriptional networks that are pivotal in asthma exacerbation and the severity of the disease. We discuss novel and emerging epigenetic therapies, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, miRNA-based treatments, and immunomodulatory probiotics, that are in preclinical or early clinical development and may support precision medicine in asthma. Collectively, the current findings highlight the translational relevance of including pathogen-related biomarkers and epigenomic data for stratifying pediatric asthma patients and for the personalization of therapeutic regimens. Epigenetic dysregulation has emerged as a novel and potentially transformative approach for mitigating chronic inflammation and long-term morbidity in children with asthma. Full article
(This article belongs to the Special Issue Molecular Research in Airway Diseases)
17 pages, 2170 KiB  
Article
RcsB and H-NS Both Contribute to the Repression the Expression of the csgDEFG Operon
by Hiroshi Ogasawara, Azusa Tomioka and Yuki Kato
Microorganisms 2025, 13(8), 1829; https://doi.org/10.3390/microorganisms13081829 - 5 Aug 2025
Abstract
Curli fimbriae are a major component of biofilm formation in Escherichia coli, and their expression is regulated by numerous transcription factors and small regulatory RNAs (sRNAs). The RcsD-RcsC-RcsB phosphorelay system, which is involved in the envelope stress response, plays a role in [...] Read more.
Curli fimbriae are a major component of biofilm formation in Escherichia coli, and their expression is regulated by numerous transcription factors and small regulatory RNAs (sRNAs). The RcsD-RcsC-RcsB phosphorelay system, which is involved in the envelope stress response, plays a role in this regulation. In this study, we report that DNase-I footprinting analysis revealed that the response regulator RcsB interacts with the −31 to +53 region of the promoter region of csgD, which encodes a major regulator of biofilm formation, and thus contributes to its transcriptional repression. Additionally, overexpression of RcsB or RcsB D56A that could not be phosphorylated by the histidine kinases RcsC and D both significantly reduced csgD expression and suppressed Curli formation. This indicates that the phosphorylation of RcsB has an insignificant impact on its affinity for its operator sites. Furthermore, we confirm that RcsB binds cooperatively to the csgD promoter region in the presence of the nucleoid-associated protein H-NS. Our study also confirms that RcsB positively regulates the expression of an sRNA, RprA, which is known to reduce mRNA csgD mRNA translation RprA via its binding to the 5′-untranslated region (UTR) of csgD. These findings indicate that, in E. coli, the RcsBCD system suppresses csgD expression through both direct transcriptional repression by the regulator RcsB and translational repression by the sRNA RprA. Full article
(This article belongs to the Special Issue Transcriptional Regulation in Bacteria, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 2266 KiB  
Article
PCV2 Infection Upregulates SOCS3 Expression to Facilitate Viral Replication in PK-15 Cells
by Yiting Li, Hongmei Liu, Yi Wu, Xiaomei Zhang, Juan Geng, Xin Wu, Wengui Li, Zhenxing Zhang, Jianling Song, Yifang Zhang and Jun Chai
Viruses 2025, 17(8), 1081; https://doi.org/10.3390/v17081081 - 5 Aug 2025
Abstract
Porcine circovirus type 2 (PCV2) is a globally prevalent swine pathogen that induces immunosuppression, predisposing pigs to subclinical infections. In intensive farming systems, PCV2 persistently impairs growth performance and vaccine efficacy, leading to substantial economic losses in the swine industry. Emerging evidence suggests [...] Read more.
Porcine circovirus type 2 (PCV2) is a globally prevalent swine pathogen that induces immunosuppression, predisposing pigs to subclinical infections. In intensive farming systems, PCV2 persistently impairs growth performance and vaccine efficacy, leading to substantial economic losses in the swine industry. Emerging evidence suggests that certain viruses exploit Suppressor of Cytokine Signaling 3 (SOCS3), a key immune checkpoint protein, to subvert host innate immunity by suppressing cytokine signaling. While SOCS3 has been implicated in various viral infections, its regulatory role in PCV2 replication remains undefined. This study aims to elucidate the mechanisms underlying the interplay between SOCS3 and PCV2 during viral pathogenesis. Porcine SOCS3 was amplified using RT-PCR and stably overexpressed in PK-15 cells through lentiviral delivery. Bioinformatics analysis facilitated the design of three siRNA candidates targeting SOCS3. We systematically investigated the effects of SOCS3 overexpression and knockdown on PCV2 replication kinetics and host antiviral responses by quantifying the viral DNA load and the mRNA levels of cytokines. PCV2 infection upregulated SOCS3 expression at both transcriptional and translational levels in PK-15 cells. Functional studies revealed that SOCS3 overexpression markedly enhanced viral replication, whereas its knockdown suppressed viral proliferation. Intriguingly, SOCS3-mediated immune modulation exhibited a divergent regulation of antiviral cytokines: PCV2-infected SOCS3-overexpressing cells showed elevated IFN-β but suppressed TNF-α expressions, whereas SOCS3 silencing conversely downregulated IFN-β while amplifying TNF-α responses. This study unveils a dual role of SOCS3 during subclinical porcine circovirus type 2 (PCV2) infection: it functions as a host-derived pro-viral factor that facilitates viral replication while simultaneously reshaping the cytokine milieu to suppress overt inflammatory responses. These findings provide novel insights into the mechanisms underlying PCV2 immune evasion and persistence and establish a theoretical framework for the development of host-targeted control strategies. Although our results identify SOCS3 as a key host determinant of PCV2 persistence, the precise molecular pathways involved require rigorous experimental validation. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

29 pages, 21916 KiB  
Article
Pentoxifylline and Norcantharidin Synergistically Suppress Melanoma Growth in Mice: A Multi-Modal In Vivo and In Silico Study
by Israel Lara-Vega, Minerva Nájera-Martínez and Armando Vega-López
Int. J. Mol. Sci. 2025, 26(15), 7522; https://doi.org/10.3390/ijms26157522 - 4 Aug 2025
Abstract
Melanoma is a highly aggressive skin cancer with limited therapeutic response. Targeting intracellular signaling pathways and promoting tumor cell differentiation are promising therapeutic strategies. Pentoxifylline (PTX) and norcantharidin (NCTD) have demonstrated antitumor properties, but their combined mechanisms of action in melanoma remain poorly [...] Read more.
Melanoma is a highly aggressive skin cancer with limited therapeutic response. Targeting intracellular signaling pathways and promoting tumor cell differentiation are promising therapeutic strategies. Pentoxifylline (PTX) and norcantharidin (NCTD) have demonstrated antitumor properties, but their combined mechanisms of action in melanoma remain poorly understood. The effects of PTX (30 and 60 mg/kg) and NCTD (0.75 and 3 mg/kg), administered alone or in combination, in a DBA/2J murine B16-F1 melanoma model via intraperitoneal and intratumoral (IT) routes were evaluated. Tumor growth was monitored, and molecular analyses included RNA sequencing and immunofluorescence quantification of PI3K, AKT1, mTOR, ERBB2, BRAF, and MITF protein levels, and molecular docking simulations were performed. In the final stage of the experiment, combination therapy significantly reduced tumor volume compared to monotherapies, with the relative tumor volume decreasing from 18.1 ± 1.2 (SD) in the IT Control group to 0.6 ± 0.1 (SD) in the IT combination-treated group (n = 6 per group; p < 0.001). RNA-seq revealed over 3000 differentially expressed genes in intratumoral treatments, with enrichment in pathways related to oxidative stress, immune response, and translation regulation (KEGG and Reactome analyses). Minimal transcript-level changes were observed for BRAF and PI3K/AKT/mTOR genes; however, immunofluorescence showed reduced total and phosphorylated levels of PI3K, AKT1, mTOR, BRAF, and ERBB2. MITF protein levels and pigmentation increased, especially in PTX-treated groups, indicating enhanced melanocytic differentiation. Docking analyses predicted direct binding of both drugs to PI3K, AKT1, mTOR, and BRAF, with affinities ranging from −5.7 to −7.4 kcal/mol. The combination of PTX and NCTD suppresses melanoma progression through dual mechanisms: inhibition of PI3K/AKT/mTOR signaling and promotion of tumor cell differentiation. Full article
Show Figures

Figure 1

18 pages, 6860 KiB  
Article
Molecular Characterization and Antiviral Function Against GCRV of Complement Factor D in Barbel Chub (Squaliobarbus curriculus)
by Yu Xiao, Zhao Lv, Yuling Wei, Mengyuan Zhang, Hong Yang, Chao Huang, Tiaoyi Xiao and Yilin Li
Fishes 2025, 10(8), 370; https://doi.org/10.3390/fishes10080370 - 2 Aug 2025
Viewed by 155
Abstract
The barbel chub (Squaliobarbus curriculus) exhibits remarkable resistance to grass carp reovirus (GCRV), a devastating pathogen in aquaculture. To reveal the molecular basis of this resistance, we investigated complement factor D (DF)—a rate-limiting serine protease governing alternative complement pathway activation. Molecular [...] Read more.
The barbel chub (Squaliobarbus curriculus) exhibits remarkable resistance to grass carp reovirus (GCRV), a devastating pathogen in aquaculture. To reveal the molecular basis of this resistance, we investigated complement factor D (DF)—a rate-limiting serine protease governing alternative complement pathway activation. Molecular cloning revealed that the barbel chub DF (ScDF) gene encodes a 1251-bp cDNA sequence translating into a 250-amino acid protein. Crucially, bioinformatic characterization identified a unique N-glycosylation site at Asn139 in ScDF, representing a structural divergence absent in grass carp (Ctenopharyngodon idella) DF (CiDF). While retaining a conserved Tryp_SPc domain harboring the catalytic triad (His61, Asp109, and Ser204) and substrate-binding residues (Asp198, Ser219, and Gly221), sequence and phylogenetic analyses confirmed ScDF’s evolutionary conservation, displaying 94.4% amino acid identity with CiDF and clustering within the Cyprinidae. Expression profiling revealed constitutive ScDF dominance in the liver, and secondary prominence was observed in the heart. Upon GCRV challenge in S. curriculus kidney (SCK) cells, ScDF transcription surged to a 438-fold increase versus uninfected controls at 6 h post-infection (hpi; p < 0.001)—significantly preceding the 168-hpi response peak documented for CiDF in grass carp. Functional validation showed that ScDF overexpression suppressed key viral capsid genes (VP2, VP5, and VP7) and upregulated the interferon regulator IRF9. Moreover, recombinant ScDF protein incubation induced interferon pathway genes and complement C3 expression. Collectively, ScDF’s rapid early induction (peaking at 6 hpi) and multi-pathway coordination may contribute to barbel chub’s GCRV resistance. These findings may provide molecular insights into the barbel chub’s high GCRV resistance compared to grass carp and novel perspectives for anti-GCRV breeding strategies in fish. Full article
(This article belongs to the Special Issue Molecular Design Breeding in Aquaculture)
Show Figures

Figure 1

20 pages, 3136 KiB  
Review
The Role of Genomic Islands in the Pathogenicity and Evolution of Plant-Pathogenic Gammaproteobacteria
by Yuta Watanabe, Yasuhiro Ishiga and Nanami Sakata
Microorganisms 2025, 13(8), 1803; https://doi.org/10.3390/microorganisms13081803 - 1 Aug 2025
Viewed by 101
Abstract
Genomic islands (GIs) including integrative and conjugative elements (ICEs), prophages, and integrative plasmids are central drivers of horizontal gene transfer in bacterial plant pathogens. These elements often carry cargo genes encoding virulence factors, antibiotic and metal resistance determinants, and metabolic functions that enhance [...] Read more.
Genomic islands (GIs) including integrative and conjugative elements (ICEs), prophages, and integrative plasmids are central drivers of horizontal gene transfer in bacterial plant pathogens. These elements often carry cargo genes encoding virulence factors, antibiotic and metal resistance determinants, and metabolic functions that enhance environmental adaptability. In plant-pathogenic species such as Pseudomonas syringae, GIs contribute to host specificity, immune evasion, and the emergence of novel pathogenic variants. ICEclc and its homologs represent integrative and mobilizable elements whose tightly regulated excision and transfer are driven by a specialized transcriptional cascade, while ICEs in P. syringae highlight the ecological impact of cargo genes on pathogen virulence and fitness. Pathogenicity islands further modulate virulence gene expression in response to in planta stimuli. Beyond P. syringae, GIs in genera such as Erwinia, Pectobacterium, and Ralstonia underpin critical traits like toxin biosynthesis, secretion system acquisition, and topoisomerase-mediated stability. Leveraging high-throughput genomics and structural biology will be essential to dissect GI regulation and develop targeted interventions to curb disease spread. This review synthesizes the current understanding of GIs in plant-pathogenic gammaproteobacteria and outlines future research priorities for translating mechanistic insights into sustainable disease control strategies. Full article
Show Figures

Figure 1

16 pages, 19172 KiB  
Communication
DEAD-Box Helicase 3 Modulates the Non-Coding RNA Pool in Ribonucleoprotein Condensates During Stress Granule Formation
by Elizaveta Korunova, B. Celia Cui, Hao Ji, Aliaksandra Sikirzhytskaya, Srestha Samaddar, Mengqian Chen, Vitali Sikirzhytski and Michael Shtutman
Non-Coding RNA 2025, 11(4), 59; https://doi.org/10.3390/ncrna11040059 - 1 Aug 2025
Viewed by 201
Abstract
Stress granule formation is a type of liquid–liquid phase separation in the cytoplasm, leading to RNA–protein condensates that are associated with various cellular stress responses and implicated in numerous pathologies, including cancer, neurodegeneration, inflammation, and cellular senescence. One of the key components of [...] Read more.
Stress granule formation is a type of liquid–liquid phase separation in the cytoplasm, leading to RNA–protein condensates that are associated with various cellular stress responses and implicated in numerous pathologies, including cancer, neurodegeneration, inflammation, and cellular senescence. One of the key components of mammalian stress granules is the DEAD-box RNA helicase DDX3, which unwinds RNA in an ATP-dependent manner. DDX3 is involved in multiple steps of RNA metabolism, facilitating gene transcription, splicing, and nuclear export and regulating cytoplasmic translation. In this study, we investigate the role of the RNA helicase DDX3’s enzymatic activity in shaping the RNA content of ribonucleoprotein (RNP) condensates formed during arsenite-induced stress by inhibiting DDX3 activity with RK-33, a small molecule previously shown to be effective in cancer clinical studies. Using the human osteosarcoma U2OS cell line, we purified the RNP granule fraction and performed RNA sequencing to assess changes in the RNA pool. Our results reveal that RK-33 treatment alters the composition of non-coding RNAs within the RNP granule fraction. We observed a DDX3-dependent increase in circular RNA (circRNA) content and alterations in the granule-associated intronic RNAs, suggesting a novel role for DDX3 in regulating the cytoplasmic redistribution of non-coding RNAs. Full article
Show Figures

Figure 1

17 pages, 3272 KiB  
Review
Timing Is Everything: The Fungal Circadian Clock as a Master Regulator of Stress Response and Pathogenesis
by Victor Coca-Ruiz and Daniel Boy-Ruiz
Stresses 2025, 5(3), 47; https://doi.org/10.3390/stresses5030047 - 1 Aug 2025
Viewed by 101
Abstract
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological [...] Read more.
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological relevance of fungal circadian systems, moving beyond the canonical Neurospora crassa model to explore the broader phylogenetic diversity of timekeeping mechanisms. We examine the core transcription-translation feedback loop (TTFL) centered on the FREQUENCY/WHITE COLLAR (FRQ/WCC) system and contrast it with divergent and non-canonical oscillators, including the metabolic rhythms of yeasts and the universally conserved peroxiredoxin (PRX) oxidation cycles. A central theme is the clock’s role in gating cellular defenses against oxidative, osmotic, and nutritional stress, enabling fungi to anticipate and withstand environmental insults through proactive regulation. We provide a detailed analysis of chrono-pathogenesis, where the circadian control of virulence factors aligns fungal attacks with windows of host vulnerability, with a focus on experimental evidence from pathogens like Botrytis cinerea, Fusarium oxysporum, and Magnaporthe oryzae. The review explores the downstream pathways—including transcriptional cascades, post-translational modifications, and epigenetic regulation—that translate temporal signals into physiological outputs such as developmental rhythms in conidiation and hyphal branching. Finally, we highlight critical knowledge gaps, particularly in understudied phyla like Basidiomycota, and discuss future research directions. This includes the exploration of novel clock architectures and the emerging, though speculative, hypothesis of “chrono-therapeutics”—interventions designed to disrupt fungal clocks—as a forward-looking concept for managing fungal infections. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

14 pages, 4802 KiB  
Article
Curcumin Attenuates Zearalenone-Induced Reproductive Damage in Mice by Modulating the Gut Microbe–Testis Axis
by Bangwang Peng, Shuaiju Guo, Junlong Niu, Yongpeng Guo, Zhixiang Wang and Wei Zhang
Foods 2025, 14(15), 2703; https://doi.org/10.3390/foods14152703 - 31 Jul 2025
Viewed by 243
Abstract
Zearalenone (ZEN), a mycotoxin commonly found in cereal crops and foods, induces testicular damage and disrupts gut microbial composition. Curcumin (CUR), a bioactive compound derived from turmeric, is known to enhance intestinal microbial balance and exhibit anti-inflammatory properties. This study aimed to investigate [...] Read more.
Zearalenone (ZEN), a mycotoxin commonly found in cereal crops and foods, induces testicular damage and disrupts gut microbial composition. Curcumin (CUR), a bioactive compound derived from turmeric, is known to enhance intestinal microbial balance and exhibit anti-inflammatory properties. This study aimed to investigate the mechanism by which CUR alleviates ZEN-induced reductions in sperm quality through the modulation of the gut microbiota–testis axis. Forty-eight 6-week-old Balb/c male mice were randomly assigned to four treatment groups: control (CON), CUR (200 mg/kg body weight CUR), ZEN (40 mg/kg body weight ZEN), and ZEN + CUR (200 mg/kg CUR + 40 mg/kg ZEN). The degree of sperm damage was quantified by assessing both the survival rate and the morphological integrity of the spermatozoa. CUR was found to mitigate ZEN-induced reductions in the testosterone levels, testicular structural damage, and disrupted spermatogenesis. Exposure to ZEN markedly perturbed the gut microbiota, characterized by increased relative abundances of Prevotella and Bacteroides and a concomitant reduction in Lactobacillus. These alterations were accompanied by pronounced activation of the IL-17A–TNF-α signaling axis, as demonstrated by elevated transcriptional and translational expression of pathway-associated genes and proteins. Co-administration of CUR effectively reinstated microbial homeostasis and mitigated ZEN-induced IL-17A pathway activation. In conclusion, ZEN induces testicular inflammation and reduced sperm quality by lowering testosterone levels and disrupting gut microbial balance, which drives the testicular IL-17A signaling pathway. CUR alleviates ZEN-induced testicular inflammation and sperm quality reduction by restoring beneficial gut microbes and testosterone levels. Full article
Show Figures

Figure 1

21 pages, 645 KiB  
Review
Vernalization of Winter Crops Increases Photosynthetic Energy Conversion Efficiency and Seed Yield
by Norman P. A. Hüner, Alexander G. Ivanov, Beth Szyszka-Mroz, Leon A. Bravo, Leonid V. Savitch and Marianna Krol
Plants 2025, 14(15), 2357; https://doi.org/10.3390/plants14152357 - 31 Jul 2025
Viewed by 284
Abstract
We summarize our present knowledge of the regulation of photostasis and photosynthetic performance versus photoprotection in response to vernalization and conclude that the enhanced photosynthetic performance of winter crops is due to an inherent increase in photosynthetic energy conversion efficiency induced by vernalization [...] Read more.
We summarize our present knowledge of the regulation of photostasis and photosynthetic performance versus photoprotection in response to vernalization and conclude that the enhanced photosynthetic performance of winter crops is due to an inherent increase in photosynthetic energy conversion efficiency induced by vernalization which translates into high seed yield in the field as well as under controlled environment conditions. This is consistent with the published data for enhanced photosynthetic performance of the only two extant terrestrial angiosperms, Colobanthus quitensis and Deschampsia antarctica, native to the frigid conditions of terrestrial Antarctica. The Cold Binding factor family of transcription factors (CBFs/DREBs) governs the enhanced photosynthetic performance of winter cereals as well as the Antarctic angiosperms. In contrast to winter crops, spring varieties survive cold environments by stimulating photoprotection at the expense of photosynthetic performance like that observed for green algae and cyanobacteria. Consequently, this minimizes the photosynthetic energy conversion efficiency of spring varieties and limits their seed yield upon cold acclimation. This review provides critical insights into the regulation of photostasis and the balance between photosynthetic performance and photoprotection in plants and how vernalization has enhanced photosynthetic energy conversion, which is essential for understanding plant adaptation to cold environments and optimizing agricultural productivity for improving crop resilience and yield in challenging climates. Full article
Show Figures

Figure 1

21 pages, 2141 KiB  
Article
Integrating Full-Length and Second-Generation Transcriptomes to Elucidate the ApNPV-Induced Transcriptional Reprogramming in Antheraea pernyi Midgut
by Xinlei Liu, Ying Li, Xinfeng Yang, Xuwei Zhu, Fangang Meng, Yaoting Zhang and Jianping Duan
Insects 2025, 16(8), 792; https://doi.org/10.3390/insects16080792 - 31 Jul 2025
Viewed by 227
Abstract
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 [...] Read more.
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 novel protein-coding genes, 17,736 novel alternative isoforms, 1664 novel long non-coding RNAs (lncRNAs), and 858 transcription factors (TFs). In addition, 2471 alternative splicing (AS) events and 3070 alternative polyadenylation (APA) sites were identified. Moreover, 3426 and 4796 differentially expressed genes (DEGs) and isoforms were identified after ApNPV infection, respectively, besides the differentially expressed lncRNAs (164), TFs (171), and novel isoforms of ApRelish (1) and ApSOCS2 (4). Enrichment analyses showed that KEGG pathways related to metabolism were suppressed, whereas GO terms related to DNA synthesis and replication were induced. Furthermore, the autophagy and apoptosis pathways were significantly enriched among the upregulated genes. Protein–protein interaction network (PPI) analysis revealed the coordinated downregulation of genes involved in mitochondrial ribosomes, V-type and F-type ATPases, and oxidative phosphorylation, indicating the disruption of host energy metabolism and organelle acidification. Moreover, coordinated upregulation of genes associated with cytoplasmic ribosomes was observed, suggesting that the infection by ApNPV interferes with host translational machinery. These results show that ApNPV infection reprograms energy metabolism, biosynthetic processes, and immune response in A. pernyi midgut. Our study provides a foundation for elucidating the mechanisms of A. pernyi–virus interactions, particularly how the viruses affect host defense strategies. Full article
(This article belongs to the Special Issue Genomics and Molecular Biology in Silkworm)
Show Figures

Graphical abstract

37 pages, 2865 KiB  
Review
Ribosome Biogenesis and Function in Cancer: From Mechanisms to Therapy
by Kezia Gitareja, Shalini S. Chelliah, Elaine Sanij, Shahneen Sandhu, Jian Kang and Amit Khot
Cancers 2025, 17(15), 2534; https://doi.org/10.3390/cancers17152534 - 31 Jul 2025
Viewed by 388
Abstract
Ribosome biogenesis is a highly coordinated, multi-step process that assembles the ribosomal machinery responsible for translating mRNAs into proteins. It begins with the rate-limiting step of RNA polymerase I (Pol I) transcription of the 47S ribosomal RNA (rRNA) genes within a specialised nucleolar [...] Read more.
Ribosome biogenesis is a highly coordinated, multi-step process that assembles the ribosomal machinery responsible for translating mRNAs into proteins. It begins with the rate-limiting step of RNA polymerase I (Pol I) transcription of the 47S ribosomal RNA (rRNA) genes within a specialised nucleolar region in the nucleus, followed by rRNA processing, modification, and assembly with ribosomal proteins and the 5S rRNA produced by Pol III. The ribosomal subunits are then exported to the cytoplasm to form functional ribosomes. This process is tightly regulated by the PI3K/RAS/MYC oncogenic network, which is frequently deregulated in many cancers. As a result, ribosome synthesis, mRNA translation, and protein synthesis rates are increased. Growing evidence supports the notion that dysregulation of ribosome biogenesis and mRNA translation plays a pivotal role in the pathogenesis of cancer, positioning the ribosome as a promising therapeutic target. In this review, we summarise current understanding of dysregulated ribosome biogenesis and function in cancer, evaluate the clinical development of ribosome targeting therapies, and explore emerging targets for therapeutic intervention in this rapidly evolving field. Full article
Show Figures

Figure 1

27 pages, 1869 KiB  
Review
Understanding the Molecular Basis of Miller–Dieker Syndrome
by Gowthami Mahendran and Jessica A. Brown
Int. J. Mol. Sci. 2025, 26(15), 7375; https://doi.org/10.3390/ijms26157375 - 30 Jul 2025
Viewed by 407
Abstract
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological [...] Read more.
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological defects, distinctive facial abnormalities, cognitive impairments, seizures, growth retardation, and congenital heart and liver abnormalities. One hallmark feature of MDS is an unusually smooth brain surface due to abnormal neuronal migration during early brain development. Several genes located within the MDS locus have been implicated in the pathogenesis of MDS, including PAFAH1B1, YWHAE, CRK, and METTL16. These genes play a role in the molecular and cellular pathways that are vital for neuronal migration, the proper development of the cerebral cortex, and protein translation in MDS. Improved model systems, such as MDS patient-derived organoids and multi-omics analyses indicate that WNT/β-catenin signaling, calcium signaling, S-adenosyl methionine (SAM) homeostasis, mammalian target of rapamycin (mTOR) signaling, Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and others are dysfunctional in MDS. This review of MDS integrates details at the clinical level alongside newly emerging details at the molecular and cellular levels, which may inform the development of novel therapeutic strategies for MDS. Full article
(This article belongs to the Special Issue Rare Diseases and Neuroscience)
Show Figures

Figure 1

21 pages, 8337 KiB  
Article
CIRBP Stabilizes Slc7a11 mRNA to Sustain the SLC7A11/GPX4 Antioxidant Axis and Limit Ferroptosis in Doxorubicin-Induced Cardiotoxicity
by Yixin Xie, Yongnan Li, Yafei Xie, Jianshu Chen, Hong Ding and Xiaowei Zhang
Antioxidants 2025, 14(8), 930; https://doi.org/10.3390/antiox14080930 - 29 Jul 2025
Viewed by 270
Abstract
Doxorubicin-induced cardiotoxicity (DIC) significantly constrains the clinical efficacy of anthracycline chemotherapy, primarily through the induction of ferroptosis, an iron-dependent, regulated cell death driven by oxidative stress and lipid peroxidation. However, the upstream regulators of ferroptosis in DIC remain incompletely defined. Cold-inducible RNA-binding protein [...] Read more.
Doxorubicin-induced cardiotoxicity (DIC) significantly constrains the clinical efficacy of anthracycline chemotherapy, primarily through the induction of ferroptosis, an iron-dependent, regulated cell death driven by oxidative stress and lipid peroxidation. However, the upstream regulators of ferroptosis in DIC remain incompletely defined. Cold-inducible RNA-binding protein (CIRBP) exhibits cardioprotective effects in various pathological contexts, but its precise role in ferroptosis-related cardiotoxicity is unknown. This study investigated whether CIRBP mitigates DIC by modulating the ferroptosis pathway via the SLC7A11 (Solute carrier family 7 member 11)/GPX4 (Glutathione peroxidase 4) axis. We observed marked downregulation of CIRBP in cardiac tissues and cardiomyocytes following doxorubicin exposure. CIRBP knockout significantly exacerbated cardiac dysfunction, mitochondrial damage, oxidative stress, and lipid peroxidation, accompanied by increased mortality rates. Conversely, CIRBP overexpression alleviated these pathological changes. Molecular docking and dynamics simulations, supported by transcriptomic analyses, revealed direct binding of CIRBP to the 3′-UTR of Slc7a11 mRNA, enhancing its stability and promoting translation. Correspondingly, CIRBP deficiency markedly suppressed SLC7A11 and GPX4 expression, impairing cystine uptake, glutathione synthesis, and antioxidant defenses, thus amplifying ferroptosis. These ferroptotic alterations were partially reversed by ferroptosis inhibitor ferrostatin-1 (Fer-1). Collectively, this study identifies CIRBP as a critical regulator of ferroptosis in DIC, elucidating a novel post-transcriptional mechanism involving Slc7a11 mRNA stabilization. These findings offer new insights into ferroptosis regulation and highlight CIRBP as a potential therapeutic target for preventing anthracycline-associated cardiac injury. Full article
Show Figures

Figure 1

20 pages, 887 KiB  
Review
Epigenetics of Endometrial Cancer: The Role of Chromatin Modifications and Medicolegal Implications
by Roberto Piergentili, Enrico Marinelli, Lina De Paola, Gaspare Cucinella, Valentina Billone, Simona Zaami and Giuseppe Gullo
Int. J. Mol. Sci. 2025, 26(15), 7306; https://doi.org/10.3390/ijms26157306 - 29 Jul 2025
Viewed by 250
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy in developed countries. Risk factors for EC include metabolic alterations (obesity, metabolic syndrome, insulin resistance), hormonal imbalance, age at menopause, reproductive factors, and inherited conditions, such as Lynch syndrome. For the inherited forms, several [...] Read more.
Endometrial cancer (EC) is the most common gynecological malignancy in developed countries. Risk factors for EC include metabolic alterations (obesity, metabolic syndrome, insulin resistance), hormonal imbalance, age at menopause, reproductive factors, and inherited conditions, such as Lynch syndrome. For the inherited forms, several genes had been implicated in EC occurrence and development, such as POLE, MLH1, TP53, PTEN, PIK3CA, PIK3R1, CTNNB1, ARID1A, PPP2R1A, and FBXW7, all mutated at high frequency in EC patients. However, gene function impairment is not necessarily caused by mutations in the coding sequence of these and other genes. Gene function alteration may also occur through post-transcriptional control of messenger RNA translation, frequently caused by microRNA action, but transcriptional impairment also has a profound impact. Here, we review how chromatin modifications change the expression of genes whose impaired function is directly related to EC etiopathogenesis. Chromatin modification plays a central role in EC. The modification of chromatin structure alters the accessibility of genes to transcription factors and other regulatory proteins, thus altering the intracellular protein amount. Thus, DNA structural alterations may impair gene function as profoundly as mutations in the coding sequences. Hence, its central importance is in the diagnostic and prognostic evaluation of EC patients, with the caveat that chromatin alteration is often difficult to identify and needs investigations that are specific and not broadly used in common clinical practice. The different phases of the healthy endometrium menstrual cycle are characterized by differential gene expression, which, in turn, is also regulated through epigenetic mechanisms involving DNA methylation, histone post-translational modifications, and non-coding RNA action. From a medicolegal and policy-making perspective, the implications of using epigenetics in cancer care are briefly explored as well. Epigenetics in endometrial cancer is not only a topic of biomedical interest but also a crossroads between science, ethics, law, and public health, requiring integrated approaches and careful regulation. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

Back to TopTop