# Mechanically Induced Cavitation in Biological Systems

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Background: Static and Dynamic Approaches

#### 2.1. Static Approach

^{T}, where F is the deformation gradient tensor [42]), i and j are free indices, and k is a dummy index.

#### 2.2. Dynamics

## 3. Experimental Methods for Cavitation-Induced Damage to the Biological Systems

#### 3.1. Needle-Induced Cavitation

^{−1}–10

^{−3}s

^{−1}). Zimberlin et al. [31] first demonstrated the use of NIC for in vivo samples [84] by measuring the elastic modulus of the bovine eye (more specifically, the vitreous body in an eye (shown in Figure 2) [84,85]. Similarly, it has been reported that biological organs have location-dependent elastic moduli (e.g., the elastic moduli measured in the areas of the nucleus and cortex parts in an extracted bovine eye (see Figure 2) were 11.8 and 0.8 kPa, respectively [85]).

^{−1}–10

^{−3}s

^{−1}).

#### 3.2. Acoustically Induced Cavitation

^{3}to 10

^{8}s

^{−1}. Using this new method, the mechanical properties of agarose hydrogel were quantified [87].

#### 3.3. Laser-Induced Cavitation

^{1}–10

^{8}) with an emphasis on underlying injury mechanisms in the human body including for traumatic brain injuries [27]. Because the LIC is based on the focused laser beam, it can be used to probe the dynamics of cavitation bubbles at different locations within a sample. This is an attractive feature for characterizing localized material properties of soft gels. For example, experimentally measured bubble dynamics over time have been analyzed and compared with theoretical analysis to predict material properties at 10

^{3}–10

^{8}strain rates [27]. Brujan et al. investigated the interaction of a single bubble with hydrogel and showed the relationship between the elastic modulus and bubble dynamics such as jetting behavior, jet velocity, bubble oscillation time, bubble migration, and bubble erosion. For example, polyacrylamide gel with 0.25 MPa elastic modulus has a maximum liquid jet velocity of 960 ms

^{−1}, which can infiltrate the elastic boundary thickness [127]. This jetting ejection and the tensile stress from the bubble collapse can influence the ablation process during short-pulsed laser surgery.

#### 3.4. Integrated Drop Tower System

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Brennen, C.E. Cavitation and Bubble Dynamics; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Sass, W.; Bräunlich, M.; Dreyer, H.P.; Matura, E.; Folberth, W.; Preismeyer, H.G.; Seifert, J. The mechanisms of stone disintegration by shock waves. Ultrasound Med. Biol.
**1991**, 17, 239–243. [Google Scholar] [CrossRef] - Sauerbruch, T.; Delius, M.; Paumgartner, G.; Holl, J.; Wess, O.; Weber, W.; Hepp, W.; Brendel, W. Fragmentation of gallstones by extracorporeal shock waves. N. Engl. J. Med.
**1986**, 314, 818–822. [Google Scholar] [CrossRef] [PubMed] - Holmer, N.G.; Almquist, L.O.; Hertz, T.G.; Holm, A.; Lindstedt, E.; Persson, H.W.; Hertz, C.H. On the mechanism of kidney stone disintegration by acoustic shock waves. Ultrasound Med. Biol.
**1991**, 17, 479–489. [Google Scholar] [CrossRef] - Chaussy, C.H.; Brendel, W.; Schmiedt, E. Extracorporeally Induced Destruction of Kidney Stones by Shock Waves. Lancet
**1980**, 316, 1265–1268. [Google Scholar] [CrossRef] - Kaude, J.V.; Williams, C.M.; Millner, M.R.; Scott, K.N.; Finlayson, B. Renal morphology and function immediately after extracorporeal shock-wave lithotripsy. AJR Am. J. Roentgenol.
**1985**, 145, 305–313. [Google Scholar] [CrossRef] [PubMed] - Sokolov, D.L.; Bailey, M.R.; Crum, L.A. Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. J. Acoust. Soc. Am.
**2001**, 110 Pt 1, 1685–1695. [Google Scholar] [CrossRef] - Ikeda, T.; Yoshizawa, S.; Tosaki, M.; Allen, J.S.; Takagi, S.; Ohta, N.; Kitamura, T.; Matsumoto, Y. Cloud cavitation control for lithotripsy using high intensity focused ultrasound. Ultrasound Med. Biol.
**2006**, 32, 1383–1397. [Google Scholar] [CrossRef] - Pishchalnikov, Y.A.; Sapozhnikov, O.A.; Bailey, M.R.; Williams, J.C., Jr.; Cleveland, R.O.; Colonius, T.; Crum, L.A.; Evan, A.P.; McAteer, J.A. Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. J. Endourol.
**2003**, 17, 435–446. [Google Scholar] [CrossRef] - Johnsen, E.; Colonius, T. Shock-induced collapse of a gas bubble in shockwave lithotripsy. J. Acoust. Soc. Am.
**2008**, 124, 2011–2020. [Google Scholar] [CrossRef] - Yoshizawa, S.; Ikeda, T.; Ito, A.; Ota, R.; Takagi, S.; Matsumoto, Y. High intensity focused ultrasound lithotripsy with cavitating microbubbles. Med. Biol. Eng. Comput.
**2009**, 47, 851–860. [Google Scholar] [CrossRef] [PubMed] - Kennedy, P.K.; Hammer, D.X.; Rockwell, B.A. Laser-induced breakdown in aqueous media. Prog. Quantum Electron.
**1997**, 21, 155–248. [Google Scholar] [CrossRef] - Zysset, B.; Fujimoto, J.G.; Deutsch, T.F. Time-resolved measurements of picosecond optical breakdown. Appl. Phys. B
**1989**, 48, 139–147. [Google Scholar] [CrossRef] - Husseini, G.A.; Pitt, W.G. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv. Drug Deliv. Rev.
**2008**, 60, 1137–1152. [Google Scholar] [CrossRef] [PubMed][Green Version] - Graham, S.M.; Carlisle, R.; Choi, J.J.; Stevenson, M.; Shah, A.R.; Myers, R.S.; Fisher, K.; Peregrino, M.B.; Seymour, L.; Coussios, C.C. Inertial cavitation to non-invasively trigger and monitor intratumoral release of drug from intravenously delivered liposomes. J. Control. Release
**2014**, 178, 101–107. [Google Scholar] [CrossRef][Green Version] - Husseini, G.A.; Diaz de la Rosa, M.A.; Richardson, E.S.; Christensen, D.A.; Pitt, W.G. The role of cavitation in acoustically activated drug delivery. J. Control. Release
**2005**, 107, 253–261. [Google Scholar] [CrossRef] [PubMed][Green Version] - Li, F.; Yang, C.; Yuan, F.; Liao, D.; Li, T.; Guilak, F.; Zhong, P. Dynamics and mechanisms of intracellular calcium waves elicited by tandem bubble-induced jetting flow. Proc. Natl. Acad. Sci. USA
**2018**, 115, E353–E362. [Google Scholar] [CrossRef][Green Version] - Lo, C.-W.; Chen, S.-F.; Li, C.-P.; Lu, P.-C. Cavitation Phenomena in Mechanical Heart Valves: Studied by Using a Physical Impinging Rod System. Ann. Biomed. Eng.
**2010**, 38, 3162–3172. [Google Scholar] [CrossRef] [PubMed] - Chao, T.-C.; Ros, A. Microfluidic single-cell analysis of intracellular compounds. J. R. Soc. Interface
**2008**, 5 (Suppl. 2), S139–S150. [Google Scholar] [CrossRef][Green Version] - Goldsmith, W. The state of head injury biomechanics: Past, present, and future: Part 1. Crit. Rev. Biomed. Eng.
**2001**, 29, 441–600. [Google Scholar] [CrossRef] [PubMed] - Lubock, P.; Goldsmith, W. Experimental cavitation studies in a model head-neck system. J. Biomech.
**1980**, 13, 1041–1052. [Google Scholar] [CrossRef] - Farjo, L.A.; Miclau, T. Ballistics and mechanisms of tissue wounding. Injury
**1997**, 28, C12–C17. [Google Scholar] [CrossRef] - Hu, J.; Lee, J.B.; Yang, K.H.; King, A.I. Injury patterns and sources of non-ejected occupants in trip-over crashes: A survey of NASS-CDS database from 1997 to 2002. Annu. Proc. Assoc. Adv. Automot. Med.
**2005**, 49, 119–132. [Google Scholar] - Estrada, J.B.; Scimone, M.T.; Cramer, H.C.; Mancia, L.; Johnsen, E.; Franck, C. Microcavitation as a Neuronal Damage Mechanism in an In Vitro Model of Blast Traumatic Brain Injury. Biophys. J.
**2017**, 112 (Suppl. 1), 159a. [Google Scholar] [CrossRef][Green Version] - Wu, Y.-T.; Adnan, A. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain. Sci. Rep.
**2017**, 7, 5323. [Google Scholar] [CrossRef][Green Version] - Kanagaraj, J.; Chen, B.; Xiao, S.; Cho, M. Reparative Effects of Poloxamer P188 in Astrocytes Exposed to Controlled Microcavitation. Ann. Biomed. Eng.
**2018**, 46, 354–364. [Google Scholar] [CrossRef] - Estrada, J.B.; Barajas, C.; Henann, D.L.; Johnsen, E.; Franck, C. High strain-rate soft material characterization via inertial cavitation. J. Mech. Phys. Solids
**2018**, 112, 291–317. [Google Scholar] [CrossRef] - Kang, W.; Adnan, A.; O’Shaughnessy, T.; Bagchi, A. Cavitation nucleation in gelatin: Experiment and mechanism. Acta Biomater.
**2018**, 67, 295–306. [Google Scholar] [CrossRef] - Kang, W.; Raphael, M. Acceleration-induced pressure gradients and cavitation in soft biomaterials. Sci. Rep.
**2018**, 8, 15840. [Google Scholar] [CrossRef] [PubMed][Green Version] - Jansen, L.E.; Birch, N.P.; Schiffman, J.D.; Crosby, A.J.; Peyton, S.R. Mechanics of intact bone marrow. J. Mech. Behav. Biomed. Mater.
**2015**, 50, 299–307. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zimberlin, J.A.; Sanabria-DeLong, N.; Tew, G.N.; Crosby, A.J. Cavitation rheology for soft materials. Soft Matter
**2007**, 3, 763–767. [Google Scholar] [CrossRef] [PubMed][Green Version] - Rayleigh, L., VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond. Edinb. Dublin Philos. Mag. J. Sci.
**1917**, 34, 94–98. [Google Scholar] [CrossRef] - Beeching, R. Resistance to cavitation erosion. Trans. Instn. Engrs. Shipb. Scot.
**1942**, 85, 210–276. [Google Scholar] - Gilmore, F.R.; California Institute of Technology; Hydrodynamics Laboratory. The Growth or Collapse of a Spherical Bubble in a Viscous Compressible Liquid; California Institute of Technology: Pasadena, CA, USA, 1952. [Google Scholar]
- Hutchens, S.B.; Crosby, A.J. Soft-solid deformation mechanics at the tip of an embedded needle. Soft Matter
**2014**, 10, 3679–3684. [Google Scholar] [CrossRef] - Barney, C.W.; Zheng, Y.; Wu, S.; Cai, S.; Crosby, A.J. Residual strain effects in needle-induced cavitation. Soft Matter
**2019**, 15, 7390–7397. [Google Scholar] [CrossRef] - Hutchens, S.B.; Fakhouri, S.; Crosby, A.J. Elastic cavitation and fracture via injection. Soft Matter
**2016**, 12, 2557–2566. [Google Scholar] [CrossRef] [PubMed][Green Version] - Barney, C.W.; Dougan, C.E.; McLeod, K.R.; Kazemi-Moridani, A.; Zheng, Y.; Ye, Z.; Tiwari, S.; Sacligil, I.; Riggleman, R.A.; Cai, S.; et al. Cavitation in soft matter. Proc. Natl. Acad. Sci. USA
**2020**, 117, 9157–9165. [Google Scholar] [CrossRef] [PubMed][Green Version] - Kundu, S.; Crosby, A.J. Cavitation and fracture behavior of polyacrylamide hydrogels. Soft Matter
**2009**, 5, 3963–3968. [Google Scholar] [CrossRef][Green Version] - Macosko, C.W. Rheology: Principles, Measurements, and Applications; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Yang, X.; Church, C.C. A model for the dynamics of gas bubbles in soft tissue. J. Acoust. Soc. Am.
**2005**, 118, 3595–3606. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ogden, R.W. Non-Linear Elastic Deformations; Courier Corporation: Chelmsford, MA, USA, 1997; p. 532. [Google Scholar]
- Rivlin, R.S.; Rideal, E.K. Large elastic deformations of isotropic materials IV. further developments of the general theory. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci.
**1948**, 241, 379–397. [Google Scholar] - Mooney, M. A Theory of Large Elastic Deformation. J. Appl. Phys.
**1940**, 11, 582–592. [Google Scholar] [CrossRef] - Rivlin, R.S. The Elasticity of Rubber. Rubber Chem. Technol.
**1992**, 65, 51–66. [Google Scholar] [CrossRef] - Mihai, L.A.; Goriely, A. How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity. Proc. R. Soc. A Math. Phys. Eng. Sci.
**2017**, 473, 20170607. [Google Scholar] [CrossRef][Green Version] - Gent, A.N. A New Constitutive Relation for Rubber. Rubber Chem. Technol.
**1996**, 69, 59–61. [Google Scholar] [CrossRef] - Czerner, M.; Fasce, L.A.; Martucci, J.F.; Ruseckaite, R.; Frontini, P.M. Deformation and fracture behavior of physical gelatin gel systems. Food Hydrocoll.
**2016**, 60, 299–307. [Google Scholar] [CrossRef] - Ogden, R.W.; Hill, R. Large deformation isotropic elasticity—On the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
**1972**, 326, 565–584. [Google Scholar] [CrossRef] - Mihai, L.A.; Budday, S.; Holzapfel, G.A.; Kuhl, E.; Goriely, A. A family of hyperelastic models for human brain tissue. J. Mech. Phys. Solids
**2017**, 106, 60–79. [Google Scholar] [CrossRef] - Umale, S.; Deck, C.; Bourdet, N.; Dhumane, P.; Soler, L.; Marescaux, J.; Willinger, R. Experimental mechanical characterization of abdominal organs: Liver, kidney & spleen. J. Mech. Behav. Biomed. Mater.
**2013**, 17, 22–33. [Google Scholar] [PubMed] - Fung, Y.C.; Fronek, K.; Patitucci, P. Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. Content
**1979**, 237, H620–H631. [Google Scholar] [CrossRef] [PubMed] - Fung, Y.C. Biomechanics: Mechanical Properties of Living Tissues, 2nd ed.; Springer: New York, NY, USA, 1993. [Google Scholar]
- Barrangou, L.M.; Daubert, C.R.; Allen Foegeding, E. Textural properties of agarose gels. I. Rheological and fracture properties. Food Hydrocoll.
**2006**, 20, 184–195. [Google Scholar] [CrossRef] - Zhu, J.; Li, T.; Cai, S.; Suo, Z. Snap-through Expansion of a Gas Bubble in an Elastomer. J. Adhes.
**2011**, 87, 466–481. [Google Scholar] [CrossRef] - Raayai-Ardakani, S.; Chen, Z.; Earl, D.R.; Cohen, T. Volume-controlled cavity expansion for probing of local elastic properties in soft materials. Soft Matter
**2019**, 15, 381–392. [Google Scholar] [CrossRef] [PubMed][Green Version] - Marcombe, R.; Cai, S.; Hong, W.; Zhao, X.; Lapusta, Y.; Suo, Z. A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter
**2010**, 6, 784–793. [Google Scholar] [CrossRef] - Cai, S.; Suo, Z. Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. J. Mech. Phys. Solids
**2011**, 59, 2259–2278. [Google Scholar] [CrossRef] - Storm, C.; Pastore, J.J.; MacKintosh, F.C.; Lubensky, T.C.; Janmey, P.A. Nonlinear elasticity in biological gels. Nature
**2005**, 435, 191–194. [Google Scholar] [CrossRef] [PubMed][Green Version] - Wang, H.; Cai, S. Drying-induced cavitation in a constrained hydrogel. Soft Matter
**2015**, 11, 1058–1061. [Google Scholar] [CrossRef] - Wang, H.; Cai, S. Cavitation in a swollen elastomer constrained by a non-swellable shell. J. Appl. Phys.
**2015**, 117, 154901. [Google Scholar] [CrossRef][Green Version] - Zhang, T.; Lin, S.; Yuk, H.; Zhao, X. Predicting fracture energies and crack-tip fields of soft tough materials. Extreme Mech. Lett.
**2015**, 4, 1–8. [Google Scholar] [CrossRef][Green Version] - Movahed, P.; Kreider, W.; Maxwell, A.D.; Hutchens, S.B.; Freund, J.B. Cavitation-induced damage of soft materials by focused ultrasound bursts: A fracture-based bubble dynamics model. J. Acoust. Soc. Am.
**2016**, 140, 1374–1386. [Google Scholar] [CrossRef] [PubMed][Green Version] - Mancia, L.; Vlaisavljevich, E.; Yousefi, N.; Rodriguez, M.; Ziemlewicz, T.J.; Lee, F.T.; Henann, D.; Franck, C.; Xu, Z.; Johnsen, E. Modeling tissue-selective cavitation damage. Phys. Med. Biol.
**2019**, 64, 225001. [Google Scholar] [CrossRef] - Johnsen, E.; Colonius, T. Numerical simulations of non-spherical bubble collapse. J. Fluid Mech.
**2009**, 629, 231–262. [Google Scholar] [CrossRef] [PubMed][Green Version] - Dollet, B.; Marmottant, P.; Garbin, V. Bubble Dynamics in Soft and Biological Matter. Annu. Rev. Fluid Mech.
**2019**, 51, 331–355. [Google Scholar] [CrossRef] - Batchelor, G.K. An Introduction to Fluid Dynamics; University Press: Cambridge, UK, 1967. [Google Scholar]
- Hamaguchi, F.; Ando, K. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation. Phys. Fluids
**2015**, 27, 113103. [Google Scholar] [CrossRef] - Jamburidze, A.; De Corato, M.; Huerre, A.; Pommella, A.; Garbin, V. High-frequency linear rheology of hydrogels probed by ultrasound-driven microbubble dynamics. Soft Matter
**2017**, 13, 3946–3953. [Google Scholar] [CrossRef] [PubMed] - Fogler, H.S.; Goddard, J.D. Collapse of Spherical Cavities in Viscoelastic Fluids. Phys. Fluids
**1970**, 13, 1135–1141. [Google Scholar] [CrossRef][Green Version] - Allen, J.S.; Roy, R.A. Dynamics of gas bubbles in viscoelastic fluids. I. Linear viscoelasticity. J. Acoust. Soc. Am.
**2000**, 107, 3167–3178. [Google Scholar] [CrossRef] - Hua, C.; Johnsen, E. Nonlinear oscillations following the Rayleigh collapse of a gas bubble in a linear viscoelastic (tissue-like) medium. Phys. Fluids
**2013**, 25, 083101. [Google Scholar] [CrossRef] - Keller, J.B.; Kolodner, I.I. Damping of Underwater Explosion Bubble Oscillations. J. Appl. Phys.
**1956**, 27, 1152–1161. [Google Scholar] [CrossRef] - Epstein, D.; Keller, J.B. Expansion and Contraction of Planar, Cylindrical, and Spherical Underwater Gas Bubbles. J. Acoust. Soc. Am.
**1972**, 52, 975–980. [Google Scholar] [CrossRef] - Plesset, M.S.; Prosperetti, A. Bubble Dynamics and Cavitation. Annu. Rev. Fluid Mech.
**1977**, 9, 145–185. [Google Scholar] [CrossRef] - Allen, J.S.; Roy, R.A. Dynamics of gas bubbles in viscoelastic fluids. II. Nonlinear viscoelasticity. J. Acoust. Soc. Am.
**2000**, 108, 1640–1650. [Google Scholar] [CrossRef] - Jiménez-Fernández, J.; Crespo, A. Bubble oscillation and inertial cavitation in viscoelastic fluids. Ultrasonics
**2005**, 43, 643–651. [Google Scholar] [CrossRef] [PubMed] - Naude, J.; Méndez, F. Periodic and chaotic acoustic oscillations of a bubble gas immersed in an Upper Convective Maxwell fluid. J. Non-Newton. Fluid Mech.
**2008**, 155, 30–38. [Google Scholar] [CrossRef] - Warnez, M.T.; Johnsen, E. Numerical modeling of bubble dynamics in viscoelastic media with relaxation. Phys. Fluids
**2015**, 27, 063103. [Google Scholar] [CrossRef][Green Version] - Veysset, D.; Gutiérrez-Hernández, U.; Dresselhaus-Cooper, L.; De Colle, F.; Kooi, S.; Nelson, K.A.; Quinto-Su, P.A.; Pezeril, T. Single-bubble and multibubble cavitation in water triggered by laser-driven focusing shock waves. Phys. Rev. E
**2018**, 97, 053112. [Google Scholar] [CrossRef][Green Version] - Tiwari, S.; Kazemi-Moridani, A.; Zheng, Y.; Barney, C.W.; McLeod, K.R.; Dougan, C.E.; Crosby, A.J.; Tew, G.N.; Peyton, S.R.; Cai, S.; et al. Seeded laser-induced cavitation for studying high-strain-rate irreversible deformation of soft materials. Soft Matter
**2020**, 16, 9006–9013. [Google Scholar] [CrossRef] - Altay, R.; Sadaghiani, A.K.; Sevgen, M.I.; Şişman, A.; Koşar, A. Numerical and Experimental Studies on the Effect of Surface Roughness and Ultrasonic Frequency on Bubble Dynamics in Acoustic Cavitation. Energies
**2020**, 13, 1126. [Google Scholar] [CrossRef][Green Version] - Yamashita, T.; Ando, K. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents. Ultrason. Sonochem.
**2019**, 52, 268–279. [Google Scholar] [CrossRef] [PubMed] - Zimberlin, J.A.; McManus, J.J.; Crosby, A.J. Cavitation rheology of the vitreous: Mechanical properties of biological tissue. Soft Matter
**2010**, 6, 3632–3635. [Google Scholar] [CrossRef][Green Version] - Cui, J.; Lee, C.H.; Delbos, A.; McManus, J.J.; Crosby, A.J. Cavitation rheology of the eye lens. Soft Matter
**2011**, 7, 7827–7831. [Google Scholar] [CrossRef][Green Version] - Izadifar, Z.; Babyn, P.; Chapman, D. Ultrasound Cavitation/Microbubble Detection and Medical Applications. J. Med. Biol. Eng.
**2019**, 39, 259–276. [Google Scholar] [CrossRef] - Mancia, L.; Yang, J.; Spratt, J.-S.; Sukovich, J.R.; Xu, Z.; Colonius, T.; Franck, C.; Johnsen, E. Acoustic cavitation rheometry. Soft Matter
**2021**, 17, 2931–2941. [Google Scholar] [CrossRef] [PubMed] - Brohult, S. Splitting of the Hæmocyanin Molecule by Ultra-sonic Waves. Nature
**1937**, 140, 805. [Google Scholar] [CrossRef] - Pohlman, R. Über die richtende Wirkung des Schallfeldes auf Suspensionen nicht kugelförmiger Teilchen. Z. Phys.
**1937**, 107, 497–508. [Google Scholar] [CrossRef] - Carstensen, E.L.; Li, K.; Schwan, H.P. Determination of the Acoustic Properties of Blood and its Components. J. Acoust. Soc. Am.
**1953**, 25, 286–289. [Google Scholar] [CrossRef] - Bailey, M.R.; Khokhlova, V.A.; Sapozhnikov, O.A.; Kargl, S.G.; Crum, L.A. Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoust. Phys.
**2003**, 49, 369–388. [Google Scholar] [CrossRef] - Coleman, A.J.; Saunders, J.E.; Crum, L.A.; Dyson, M. Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med. Biol.
**1987**, 13, 69–76. [Google Scholar] [CrossRef] - Crum, L.A. Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. J. Urol.
**1988**, 140, 1587–1590. [Google Scholar] [CrossRef] - Kennedy, J.E. High-intensity focused ultrasound in the treatment of solid tumours. Nat. Rev. Cancer
**2005**, 5, 321–327. [Google Scholar] [CrossRef] [PubMed] - Fechheimer, M.; Boylan, J.F.; Parker, S.; Sisken, J.E.; Patel, G.L.; Zimmer, S.G. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc. Natl. Acad. Sci. USA
**1987**, 84, 8463–8467. [Google Scholar] [CrossRef][Green Version] - Bailey, M.R. Control of acoustic cavitation with application to lithotripsy. J. Acoust. Soc. Am.
**1997**, 102, 221. [Google Scholar] [CrossRef] - Carnell, M.T.; Alcock, R.D.; Emmony, D.C. Optical imaging of shock waves produced by a high-energy electromagnetic transducer. Phys. Med. Biol.
**1993**, 38, 1575–1588. [Google Scholar] [CrossRef] [PubMed] - Cathignol, E.; Tavakkoli, J.; Birer, A.; Arefiev, A. Comparison between the effects of cavitation induced by two different pressure-time shock waveform pulses. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
**1998**, 45, 788–799. [Google Scholar] [CrossRef] [PubMed] - Church, C.C. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. J. Acoust Soc. Am.
**1989**, 86, 215–227. [Google Scholar] [CrossRef] - Philipp, A.; Delius, M.; Scheffczyk, C.; Vogel, A.; Lauterborn, W. Interaction of lithotripter-generated shock waves with air bubbles. J. Acoust. Soc. Am.
**1993**, 93, 2496–2509. [Google Scholar] [CrossRef] - Sapozhnikov, O.A.; Khokhlova, V.A.; Bailey, M.R.; Williams, J.C., Jr.; McAteer, J.A.; Cleveland, R.O.; Crum, L.A. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy. J. Acoust. Soc. Am.
**2002**, 112, 1183–1195. [Google Scholar] [CrossRef] - Ikeda, T.; Yoshizawa, S.; Koizumi, N.; Mitsuishi, M.; Matsumoto, Y. Focused Ultrasound and Lithotripsy. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidleberg, Germany, 2016; Volume 880, pp. 113–129. [Google Scholar]
- Brujan, E.A.; Ikeda, T.; Matsumoto, Y. Shock wave emission from a cloud of bubbles. Soft Matter
**2012**, 8, 5777–5783. [Google Scholar] [CrossRef] - Brujan, E.A.; Ikeda, T.; Yoshinaka, K.; Matsumoto, Y. The final stage of the collapse of a cloud of bubbles close to a rigid boundary. Ultrason. Sonochem.
**2011**, 18, 59–64. [Google Scholar] [CrossRef] - Evan, A.P.; Willis, L.R.; Lingeman, J.E.; McAteer, J.A. Renal Trauma and the Risk of Long-Term Complications in Shock Wave Lithotripsy. Nephron
**1998**, 78, 1–8. [Google Scholar] [CrossRef] - Evan, A.P.; Willis, L.R.; McAteer, J.A.; Bailey, M.R.; Connors, B.A.; Shao, Y.; Lingeman, J.E.; Williams, J.C., Jr.; Fineberg, N.S.; Crum, L.A. Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. J. Urol.
**2002**, 168 Pt 1, 1556–1562. [Google Scholar] [CrossRef] - Kodama, T.; Tomita, Y. Cavitation bubble behavior and bubble–shock wave interaction near a gelatin surface as a study of in vivo bubble dynamics. Appl. Phys. B
**2000**, 70, 139–149. [Google Scholar] [CrossRef] - Zhong, P.; Zhou, Y.; Zhu, S. Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Ultrasound Med. Biol.
**2001**, 27, 119–134. [Google Scholar] [CrossRef] - Chen, H.; Brayman, A.A.; Bailey, M.R.; Matula, T.J. Blood vessel rupture by cavitation. Urol. Res.
**2010**, 38, 321–326. [Google Scholar] [CrossRef] [PubMed][Green Version] - Van Wamel, A.; Kooiman, K.; Harteveld, M.; Emmer, M.; ten Cate, F.J.; Versluis, M.; de Jong, N. Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation. J. Control. Release
**2006**, 112, 149–155. [Google Scholar] [CrossRef] [PubMed] - Kudo, N.; Okada, K.; Yamamoto, K. Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells. Biophys. J.
**2009**, 96, 4866–4876. [Google Scholar] [CrossRef] [PubMed][Green Version] - Park, J.; Fan, Z.; Deng, C.X. Effects of shear stress cultivation on cell membrane disruption and intracellular calcium concentration in sonoporation of endothelial cells. J. Biomech.
**2011**, 44, 164–169. [Google Scholar] [CrossRef][Green Version] - Shohet, R.V.; Chen, S.; Zhou, Y.T.; Wang, Z.; Meidell, R.S.; Unger, R.H.; Grayburn, P.A. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation
**2000**, 101, 2554–2556. [Google Scholar] [CrossRef] [PubMed][Green Version] - Carson, A.R.; McTiernan, C.F.; Lavery, L.; Grata, M.; Leng, X.; Wang, J.; Chen, X.; Villanueva, F.S. Ultrasound-targeted microbubble destruction to deliver siRNA cancer therapy. Cancer Res.
**2012**, 72, 6191–6199. [Google Scholar] [CrossRef][Green Version] - Dalecki, D. Mechanical bioeffects of ultrasound. Annu. Rev. Biomed. Eng.
**2004**, 6, 229–248. [Google Scholar] [CrossRef] [PubMed] - Kimmel, E. Cavitation bioeffects. Crit. Rev. Biomed. Eng.
**2006**, 34, 105–161. [Google Scholar] [CrossRef] - O’Brien, W.D., Jr. Ultrasound-biophysics mechanisms. Prog. Biophys. Mol. Biol.
**2007**, 93, 212–255. [Google Scholar] [CrossRef][Green Version] - Krasovitski, B.; Frenkel, V.; Shoham, S.; Kimmel, E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl. Acad. Sci. USA
**2011**, 108, 3258–3263. [Google Scholar] [CrossRef][Green Version] - Iida, Y.; Ashokkumar, M.; Tuziuti, T.; Kozuka, T.; Yasui, K.; Towata, A.; Lee, J. Bubble population phenomena in sonochemical reactor: II. Estimation of bubble size distribution and its number density by simple coalescence model calculation. Ultrason. Sonochem.
**2010**, 17, 480–486. [Google Scholar] [CrossRef] [PubMed] - Burdin, F.; Tsochatzidis, N.A.; Guiraud, P.; Wilhelm, A.M.; Delmas, H. Characterisation of the acoustic cavitation cloud by two laser techniques. Ultrason. Sonochem.
**1999**, 6, 43–51. [Google Scholar] [CrossRef] - Chen, W.S.; Matula, T.J.; Crum, L.A. The disappearance of ultrasound contrast bubbles: Observations of bubble dissolution and cavitation nucleation. Ultrasound Med. Biol.
**2002**, 28, 793–803. [Google Scholar] [CrossRef] - Tsochatzidis, N.A.; Guiraud, P.; Wilhelm, A.M.; Delmas, H. Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique. Chem. Eng. Sci.
**2001**, 56, 1831–1840. [Google Scholar] [CrossRef] - Lee, J.; Ashokkumar, M.; Kentish, S.; Grieser, F. Determination of the Size Distribution of Sonoluminescence Bubbles in a Pulsed Acoustic Field. J. Am. Chem. Soc.
**2005**, 127, 16810–16811. [Google Scholar] [CrossRef] [PubMed] - Maiman, T.H. Stimulated Optical Radiation in Ruby. Nature
**1960**, 187, 493–494. [Google Scholar] [CrossRef] - Javan, A.; Bennett, W.R.; Herriott, D.R. Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a He-Ne Mixture. Phys. Rev. Lett.
**1961**, 6, 106–110. [Google Scholar] [CrossRef][Green Version] - Lauterborn, W.; Bolle, H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech.
**1975**, 72, 391–399. [Google Scholar] [CrossRef] - Brujan, E.-A.; Nahen, K.; Schmidt, P.; Vogel, A. Dynamics of laser-induced cavitation bubbles near elastic boundaries: Influence of the elastic modulus. J. Fluid Mech.
**2001**, 433, 283–314. [Google Scholar] [CrossRef][Green Version] - Frenz, M.; Pratisto, H.; Konz, F.; Jansen, E.D.; Welch, A.J.; Weber, H.P. Comparison of the effects of absorption coefficient and pulse duration of 2.12-/spl mu/m and 2.79-/spl mu/m radiation on laser ablation of tissue. IEEE J. Quantum Electron.
**1996**, 32, 2025–2036. [Google Scholar] [CrossRef] - Asshauer, T.; Rink, K.; Delacrétaz, G. Acoustic transient generation by holmium-laser-induced cavitation bubbles. J. Appl. Phys.
**1994**, 76, 5007–5013. [Google Scholar] [CrossRef] - Chen, C.; Li, X.; Zhang, X.; Zhan, Z.; Xie, S. Influence of Static Pressure on Dynamic Characteristics of Laser-Induced Cavitation and Hard-Tissue Ablation under Liquid Environment. In Proceedings of the SPIE, Beijing, China, 9–11 October 2014; Volume 9268, p. 92682C. [Google Scholar]
- Hutson, M.S.; Ma, X. Plasma and cavitation dynamics during pulsed laser microsurgery in vivo. Phys. Rev. Lett.
**2007**, 99, 158104. [Google Scholar] [CrossRef] [PubMed][Green Version] - Wei, C.-w.; Xia, J.; Lombardo, M.; Perez, C.; Arnal, B.; Larson-Smith, K.; Pelivanov, I.; Matula, T.; Pozzo, L.; O’Donnell, M. Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: In vitro results. Opt. Lett.
**2014**, 39, 2599–2602. [Google Scholar] [CrossRef] - Rau, K.R.; Quinto-Su, P.A.; Hellman, A.N.; Venugopalan, V. Pulsed Laser Microbeam-Induced Cell Lysis: Time-Resolved Imaging and Analysis of Hydrodynamic Effects. Biophys. J.
**2006**, 91, 317–329. [Google Scholar] [CrossRef] [PubMed][Green Version] - Quinto-Su, P.A.; Suzuki, M.; Ohl, C.-D. Fast temperature measurement following single laser-induced cavitation inside a microfluidic gap. Sci. Rep.
**2014**, 4, 5445. [Google Scholar] [CrossRef] [PubMed][Green Version] - Sacchi, C. Laser-induced electric breakdown in water. J. Opt. Soc. Am. B Opt. Phys.
**1991**, 8, 337–345. [Google Scholar] [CrossRef] - Doukas, A.G.; McAuliffe, D.J.; Flotte, T.J. Biological effects of laser-induced shock waves: Structural and functional cell damage in vitro. Ultrasound Med. Biol.
**1993**, 19, 137–146. [Google Scholar] [CrossRef] - Khalkhal, E.; Razzaghi, M.; Rostami-Nejad, M.; Rezaei-Tavirani, M.; Heidari Beigvand, H.; Rezaei Tavirani, M. Evaluation of Laser Effects on the Human Body After Laser Therapy. J. Lasers Med. Sci.
**2020**, 11, 91–97. [Google Scholar] [CrossRef] - Cremers, D.A.; Radziemski, L.J.; Loree, T.R. Spectrochemical Analysis of Liquids Using the Laser Spark. Appl. Spectrosc.
**1984**, 38, 721–729. [Google Scholar] [CrossRef] - Nakamura, S.; Ito, Y.; Sone, K.; Hiraga, H.; Kaneko, K.-i. Determination of an Iron Suspension in Water by Laser-Induced Breakdown Spectroscopy with Two Sequential Laser Pulses. Anal. Chem.
**1996**, 68, 2981–2986. [Google Scholar] [CrossRef] [PubMed] - Stratis, D.N.; Eland, K.L.; Angel, S.M. Dual-Pulse LIBS Using a Pre-ablation Spark for Enhanced Ablation and Emission. Appl. Spectrosc.
**2000**, 54, 1270–1274. [Google Scholar] [CrossRef] - Angel, S.M.; Stratis, D.N.; Eland, K.L.; Lai, T.; Berg, M.A.; Gold, D.M. LIBS using dual- and ultra-short laser pulses. Fresenius’ J. Anal. Chem.
**2001**, 369, 320–327. [Google Scholar] [CrossRef] - St-Onge, L.; Sabsabi, M.; Cielo, P. Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode. Spectrochim. Acta Part B At. Spectrosc.
**1998**, 53, 407–415. [Google Scholar] [CrossRef] - Pichahchy, A.E.; Cremers, D.A.; Ferris, M.J. Elemental analysis of metals under water using laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc.
**1997**, 52, 25–39. [Google Scholar] [CrossRef] - Kang, W.; Chen, Y.; Bagchi, A.; O’Shaughnessy, T.J. Characterization and detection of acceleration-induced cavitation in soft materials using a drop-tower-based integrated system. Rev. Sci. Instrum.
**2017**, 88, 125113. [Google Scholar] [CrossRef] - Fu, Y.; Lu, H.; Nian, G.; Wang, P.; Lin, N.; Hu, X.; Zhou, H.; Yu, H.; Qu, S.; Yang, W. Size-dependent inertial cavitation of soft materials. J. Mech. Phys. Solids
**2020**, 137, 103859. [Google Scholar] [CrossRef] - Kang, W.; Robitaille, M.C.; Merrill, M.; Teferra, K.; Kim, C.; Raphael, M.P. Mechanisms of cell damage due to mechanical impact: An in vitro investigation. Sci. Rep.
**2020**, 10, 12009. [Google Scholar] [CrossRef] [PubMed]

**Figure 3.**Cell membrane damage in the presence of a microbubble oscillated by ultrasound. (

**a**) Damage and repair of bovine endothelial monolayer cells measured over time in propidium iodide (PI) and Fura 2 fluorescence [111]. (

**b**) Time-lapse results of PI (B,E) and Calcium (C,F) changes in bEnd.3 cells with (A,B,C) or without shear stress (D,E,F) [112].

**Figure 4.**(

**a**–

**c**) Procedure of seeded laser-induced cavitation (SLIC) from cavitation nucleation to collapse. Magnified image of eicosane flakes around an ablation seed (

**d**) before and (

**e**) after SLIC. (

**f**) Maximum cavity size with respect to seed diameter and laser-pulse energy [81].

**Figure 5.**Characterization of cell injury depending on drop height using Hs27 fibroblasts (x-axis: time and y-axis: average confluency). (

**a**) The average confluency graph for 30 and 40 cm drops. (

**b**) The local confluency graph for 40 cm drop. (

**c**,

**d**) Live cell images during 40 cm drop (

**c**) before and (

**d**) after impact [146].

**Table 1.**The equation of elastic stress tensor and constitutive strain functions with different types of models with relevant material parameter.

Name of Model | Strain Energy Density (W) | Reference |
---|---|---|

Neo-Hookean Model | $\frac{\mu}{2}\left({I}_{1}-3\right)$ | [43] |

Mooney–Rivlin Model | $\frac{\mu}{2}\left[c\left({I}_{1}-3\right)+\left(1-c\right)\left({I}_{2}-3\right)\right]$ | [44,45] |

Gent Model | $\frac{\mu}{2}{I}_{m}\mathrm{ln}\left(\frac{{I}_{m}}{{I}_{m}-{I}_{1}+3}\right)$ | [47] |

Ogden Model | $\frac{2\mu}{{N}^{2}}\left({\lambda}_{r}^{N}+{\lambda}_{\theta}^{N}+{\lambda}_{\varphi}^{N}-3\right)$ | [49] |

Fung Model | $\frac{\mu}{2\alpha}{e}^{\alpha \left({I}_{1}-3\right)}$ | [52,53] |

**Table 2.**Summary of linear constitutive models [66].

Name of Model | Strain Energy Density (W) | Description | Reference |
---|---|---|---|

Newtonian | ${\sigma}_{rr}=2\nu {\dot{\epsilon}}_{rr}$ | Viscous stresses linearly dependent on the local strain rate | [67] |

Kelvin–Voigt | ${\sigma}_{rr}=2\left(\mu {\epsilon}_{rr}+\nu {\dot{\epsilon}}_{rr}\right)$ | A spring and a dashpot in parallel; Viscoelastic solid; Creep behavior | [41,68,69] |

Maxwell | $2\nu {\dot{\epsilon}}_{rr}=\frac{\nu}{\mu}{\dot{\sigma}}_{rr}+{\sigma}_{rr}$ | A spring and a dashpot in series; Viscoelastic liquid; Stress relaxation | [70,71] |

Standard Linear solid | $\frac{v}{\mu}{\dot{\sigma}}_{rr}+{\sigma}_{rr}=2\mu {\epsilon}_{rr}+2\nu {\dot{\epsilon}}_{rr}$ | Both creep and stress relaxation | [72] |

NIC | AIC | LIC | Drop Tower Test | |
---|---|---|---|---|

Driving force | Pressure energy | Wave energy | Potential energy | |

Strain rate | 10^{−4}–10^{3} | 10^{3}–10^{8} | 10^{1}–10^{8} | 10^{0}–10^{5} |

Scale (µm) | 10^{0}–10^{5} | 10^{3} | 10^{−1}–10^{2} | 10^{2}–10^{5} |

Pressure (Pa) | ≤10^{5} | ≤10^{7} | ≤10^{8} | ≤10^{6} |

Cavity type | Single | Multiple | Single and Multiple | Single and Multiple |

Level of accessibility | Low | High | High | Intermediate |

Approach type | Contact | Noncontact | Noncontact | Noncontact |

Thermal effect | Low | Intermediate | High | Low |

Application | Drug delivery | Lithotripsy Imaging, Drug delivery | Drug delivery, Microsurgery, Medical diagnostic, High strain rate material properties | High strain rate material properties (Isothermal) |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kim, C.; Choi, W.J.; Ng, Y.; Kang, W. Mechanically Induced Cavitation in Biological Systems. *Life* **2021**, *11*, 546.
https://doi.org/10.3390/life11060546

**AMA Style**

Kim C, Choi WJ, Ng Y, Kang W. Mechanically Induced Cavitation in Biological Systems. *Life*. 2021; 11(6):546.
https://doi.org/10.3390/life11060546

**Chicago/Turabian Style**

Kim, Chunghwan, Won June Choi, Yisha Ng, and Wonmo Kang. 2021. "Mechanically Induced Cavitation in Biological Systems" *Life* 11, no. 6: 546.
https://doi.org/10.3390/life11060546