Multipotent Stromal Cell Extracellular Vesicle Distribution in Distant Organs after Introduction into a Bone Tissue Defect of a Limb
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation, Cultivation, and Characteristics of MSCs; Isolation of MSC EVs
2.2. Introduction of MSC EVs into a Bone Defect
2.3. Morphological Research Methods
3. Research Findings and Their Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Assis, A.C.; Carvalho, J.L.; Jacoby, B.A.; Ferreira, R.L.; Castanheira, P.; Diniz, S.O.; Cardoso, V.N.; Goes, A.M.; Ferreira, A.J. Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant. 2010, 19, 219–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitsutake, Y.; Pyun, W.B.; Rouy, D.; Foo, C.W.P.; Stertzer, S.H.; Altman, P.; Ikeno, F. Improvement of local cell delivery using helix transendocardial delivery catheter in a porcine heart. Int. Heart J. 2017, 58, 435–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiborodin, I.V.; Maslov, R.V.; Mikheeva, T.V.; Khomenyuk, S.V.; Maiborodina, V.I.; Morozov, V.V.; Ryaguzov, M.E.; Marchukov, S.V.; Kozlova, J.N. The distribution of multipotent mesenchymal stromal cells and their detritus throughout the organism after subcutaneous introduction. Zhurnal Obshchei Biologii 2020, 81, 96–107. [Google Scholar] [CrossRef]
- Maiborodin, I.V.; Maslov, R.V.; Mikheeva, T.V.; Marchukov, S.V.; Maiborodina, V.I.; Shevela, A.A. Opportunity for elimination of injected multipotent stromal cells via lungs. Cell. Ther. Transpl. 2020, 9, 67–73. [Google Scholar] [CrossRef]
- Maiborodin, I.V.; Maslov, R.V.; Mikheeva, T.V.; Elovskiy, A.A.; Figurenko, N.F.; Maiborodina, V.I.; Shevela, A.I.; Anishchenko, V.V. The possibility of the angiogenesis in tissues remote from the place of the multipotent mesenchymal stromal cell injection. Molekulyarnaya Meditsina 2018, 16, 22–26. [Google Scholar] [CrossRef]
- Rodrigues, M.; Yates, C.C.; Nuschke, A.; Griffith, L.; Wells, A. The matrikine tenascin-C protects multipotential stromal cells/mesenchymal stem cells from death cytokines such as FasL. Tissue Eng Part A. 2013, 19, 1972–1983. [Google Scholar] [CrossRef] [Green Version]
- Maiborodin, I.V.; Matveeva, V.A.; Maslov, R.V.; Onoprienko, N.V.; Kuznetsova, I.V.; Chastikin, G.A. Fluorescent macrophages in the lymph nodes after application of multipotent mesenchymal stromal cells with transfected GFP gene. Novosti Khirurgii 2014, 22, 526–532. [Google Scholar] [CrossRef] [Green Version]
- Maiborodin, I.V.; Matveyeva, V.A.; Maslov, R.V.; Onopriyenko, N.V.; Kuznetsova, I.V.; Chastikin, G.A.; Anikeyev, A.A. Some reactions of the regional lymph nodes of rats after implantation of multipotent stromal cells adsorbed on polyhydroxyalkanoate into a bone tissue defect. Morfologiia 2016, 149, 21–26. [Google Scholar]
- Yates, C.C.; Nuschke, A.; Rodrigues, M.; Whaley, D.; Dechant, J.J.; Taylor, D.P.; Wells, A. Improved transplanted stem cell survival in a polymer gel supplemented with Tenascin C accelerates healing and reduces scarring of murine skin wounds. Cell Transplant. 2017, 26, 103–113. [Google Scholar] [CrossRef]
- Maiborodin, I.V.; Morozov, V.V.; Anikeev, A.A.; Figurenko, N.F.; Maslov, R.V.; Chastikin, G.A.; Matveeva, V.A.; Maiborodina, V.I. Macrophage reaction to multipotent mesenchymal stromal cells introduction into surgical trauma site in rats. Novosti Khirurgii 2017, 25, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Park, K.S.; Svennerholm, K.; Shelke, G.V.; Bandeira, E.; Lässer, C.; Jang, S.C.; Chandode, R.; Gribonika, I.; Lötvall, J. Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10. Stem Cell Res. Ther. 2019, 10, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grange, C.; Tapparo, M.; Bruno, S.; Chatterjee, D.; Quesenberry, P.J.; Tetta, C.; Camussi, G. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int. J. Mol. Med. 2014, 33, 1055–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Undale, A.H.; Westendorf, J.J.; Yaszemski, M.J.; Khosla, S. Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin. Proc. 2009, 84, 893–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaza, T.; Kentaro, A.; Chen, C.; Liu, Y.; Shi, Y.; Gronthos, S.; Wang, S.; Shi, S. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res. Ther. 2010, 1, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Xu, R.; Sun, X.; Duan, Y.; Han, Y.; Zhao, Y.; Qian, H.; Zhu, W.; Xu, W. Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy 2016, 18, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hou, D.; Chen, X.; Li, D.; Zhu, L.; Zhang, Y.; Li, J.; Bian, Z.; Liang, X.; Cai, X.; et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. Cell Res. 2012, 22, 107–126. [Google Scholar] [CrossRef]
- Lawson, C.; Kovacs, D.; Finding, E.; Ulfelder, E.; Luis-Fuentes, V. Extracellular Vesicles: Evolutionarily Conserved Mediators of Intercellular Communication. Yale J. Biol. Med. 2017, 90, 481–491. [Google Scholar]
- Sukhikh, G.T.; Pekarev, O.G.; Maiborodin, I.V.; Silachev, D.N.; Shevtsova, Y.A.; Goryunov, K.V.; Onoprienko, N.V.; Maiborodina, V.I.; Galenok, R.V.; Novikov, A.V.; et al. Preservation of mesenchymal stem cell-derived extracellular vesicles after abdominal delivery in the experiment. Bull. Exp. Biol. Med. 2020, 169, 122–129. [Google Scholar] [CrossRef]
- Maiborodin, I.V.; Shevela, A.A.; Marchukov, S.V.; Morozov, V.V.; Matveeva, V.A.; Maiborodina, V.I.; Novikov, A.M.; Shevela, A.I. Regeneration of the bone defect at experimental application of extracellular microvesicles from multipotent stromal cells. Novosti Khirurgii 2020, 28, 359–369. [Google Scholar] [CrossRef]
- Lötvall, J.; Hill, A.F.; Hochberg, F.; Buzás, E.I.; Di Vizio, D.; Gardiner, C.; Gho, Y.S.; Kurochkin, I.V.; Mathivanan, S.; Quesenberry, P.; et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2014, 3, 26913. [Google Scholar] [CrossRef]
- Witwer, K.W.; Soekmadji, C.; Hill, A.F.; Wauben, M.H.; Buzás, E.I.; Di Vizio, D.; Falcon-Perez, J.M.; Gardiner, C.; Hochberg, F.; Kurochkin, I.V.; et al. Updating the MISEV minimal requirements for extracellular vesicle studies: Building bridges to reproducibility. J. Extracell. Vesicles 2017, 6, 1396823. [Google Scholar] [CrossRef] [Green Version]
- Dias, M.V.; Martins, V.R.; Hajj, G.N. Stress-Inducible Protein 1 (STI1): Extracellular Vesicle Analysis and Quantification. Methods Mol. Biol. 2016, 1459, 161–174. [Google Scholar] [CrossRef]
- Zhang, S.; Chu, W.C.; Lai, R.C.; Lim, S.K.; Hui, J.H.; Toh, W.S. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr. Cart. 2016, 24, 2135–2140. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.X.; Xu, L.L.; Rui, Y.F.; Huang, S.; Lin, S.E.; Xiong, J.H.; Li, Y.H.; Lee, W.Y.; Li, G. The effects of secretion factors from umbilical cord derived mesenchymal stem cells on osteogenic differentiation of mesenchymal stem cells. PLoS ONE 2015, 10, e0120593. [Google Scholar] [CrossRef] [Green Version]
- Torreggiani, E.; Perut, F.; Roncuzzi, L.; Zini, N.; Baglìo, S.R.; Baldini, N. Exosomes: Novel effectors of human platelet lysate activity. Eur. Cell. Mater. 2014, 28, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Maiborodin, I.; Lushnikova, E.; Klinnikova, M.; Klochkova, S. Some Special Aspects of Liver Repair after Resection and Administration of Multipotent Stromal Cells in Experiment. Life 2021, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Pradel, L.C.; Chasson, L.; van Rooijen, N.; Grau, G.E.; Hunt, N.H.; Chimini, G. Technical advance: Autofluorescence as a tool for myeloid cell analysis. J. Leukoc. Biol. 2010, 88, 597–603. [Google Scholar] [CrossRef]
- Potter, K.A.; Simon, J.S.; Velagapudi, B.; Capadona, J.R. Reduction of autofluorescence at the microelectrode-cortical tissue interface improves antibody detection. J. Neurosci. Methods 2012, 203, 96–105. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maiborodin, I.; Shevela, A.; Toder, M.; Marchukov, S.; Tursunova, N.; Klinnikova, M.; Maiborodina, V.; Lushnikova, E.; Shevela, A. Multipotent Stromal Cell Extracellular Vesicle Distribution in Distant Organs after Introduction into a Bone Tissue Defect of a Limb. Life 2021, 11, 306. https://doi.org/10.3390/life11040306
Maiborodin I, Shevela A, Toder M, Marchukov S, Tursunova N, Klinnikova M, Maiborodina V, Lushnikova E, Shevela A. Multipotent Stromal Cell Extracellular Vesicle Distribution in Distant Organs after Introduction into a Bone Tissue Defect of a Limb. Life. 2021; 11(4):306. https://doi.org/10.3390/life11040306
Chicago/Turabian StyleMaiborodin, Igor, Aleksandr Shevela, Michael Toder, Sergey Marchukov, Natalya Tursunova, Marina Klinnikova, Vitalina Maiborodina, Elena Lushnikova, and Andrew Shevela. 2021. "Multipotent Stromal Cell Extracellular Vesicle Distribution in Distant Organs after Introduction into a Bone Tissue Defect of a Limb" Life 11, no. 4: 306. https://doi.org/10.3390/life11040306
APA StyleMaiborodin, I., Shevela, A., Toder, M., Marchukov, S., Tursunova, N., Klinnikova, M., Maiborodina, V., Lushnikova, E., & Shevela, A. (2021). Multipotent Stromal Cell Extracellular Vesicle Distribution in Distant Organs after Introduction into a Bone Tissue Defect of a Limb. Life, 11(4), 306. https://doi.org/10.3390/life11040306