Lung Microbiome in Cystic Fibrosis
Abstract
:1. Introduction
Molecular and Cellular Characteristics of Cystic Fibrosis
2. How Does the Lung Microbiome in CF Patients Change with Age and Disease Stage?
3. How Do CF Therapies Affect the Lung Microbiome?
4. Can We Improve Lung Function by Restoring Microbiome Diversity?
5. How Should We Look at the Microbiome to Understand Its Complexity?
6. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Miriam, F.; Moffatt, F.M.; Cookson, W.O. The lung microbiome in health and disease. Clin. Med. 2017, 17, 525–529. [Google Scholar] [CrossRef]
- Mathieu, E.; Escribano-Vazquez, U. Paradigms of lung microbiota functions in health and disease, particularly, in asthma. Front. Physiol. 2018, 21, 1168. [Google Scholar] [CrossRef] [PubMed]
- Gollwitzer, E.S.; Saglani, S. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat. Med. 2014, 20, 642–647. [Google Scholar] [CrossRef] [PubMed]
- de Agüero, M.G.; Ganal-Vonarburg, S.C. The maternal microbiota drives early postnatal innate immune development. Science 2016, 351, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Li, K.J.; Chen, Z.L. Dysbiosis of lower respiratory tract microbiome are associated with inflammation and microbial function variety. Respir. Res. 2019, 20, 1–16. [Google Scholar] [CrossRef]
- Françoise, A.; Héry-Arnaud, G. The microbiome in cystic fibrosis pulmonary disease. Genes 2020, 11, 536. [Google Scholar] [CrossRef]
- Amato, F.; Scudieri, P. Two CFTR mutations within codon 970 differently impact on the chloride channel functionality. Hum. Mutat. 2019, 40, 742–748. [Google Scholar] [CrossRef]
- Fonseca, C.; Bicker, J. Cystic fibrosis: Physiopathology and the latest pharmacological treatments. Pharmacol. Res. 2020, 162, 105267. [Google Scholar] [CrossRef]
- Castaldo, A.; Cernera, G. TAS2R38 is a novel modifier gene in patients with cystic fibrosis. Sci. Rep. 2020, 10, 5806. [Google Scholar] [CrossRef] [Green Version]
- Maniscalco, M.; Bianco, A. Recent advances on nitric oxide in the upper airways. Curr. Med. Chem. 2016, 23, 2736–2745. [Google Scholar] [CrossRef]
- Terlizzi, V.; Lucarelli, M. Clinical expression of cystic fibrosis in a large cohort of Italian siblings. BMC Pulm. Med. 2018, 18, 196. [Google Scholar] [CrossRef] [PubMed]
- de Blasio, F.; de Blasio, F. Evaluation of body composition in COPD patients using multifrequency bioelectrical impedance analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 2419–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Blasio, F.; Santaniello, M.G. Raw BIA variables are predictors of muscle strength in patients with chronic obstructive pulmonary disease. Eur. J. Clin. Nutr. 2017, 71, 1336–1340. [Google Scholar] [CrossRef] [PubMed]
- Zemanick, E.T.; Wagner, B.D. Airway microbiota across age and disease spectrum in cystic fibrosis. Eur. Respir. J. 2017, 50, 1700832. [Google Scholar] [CrossRef] [PubMed]
- Matthew, E.; Loewen, M.E. Regulation of murine airway surface liquid volume by CFTR and Ca2+-activated Cl- conductances. J. Gen. Physiol. 2002, 120, 407–418. [Google Scholar]
- Knowles, M.R.; Richard, C.; Boucher, R.C. Mucus clearance as a primary innate defense mechanism for mammalian airways. J. Clin. Investig. 2002, 109, 571–577. [Google Scholar] [CrossRef]
- Ahmad, S.; Tyrrell, J. Short palate, lung, and nasal epithelial clone 1 has antimicrobial and antibiofilm activities against the burkholderia cepacia complex. Antimicrob. Agents Chemother. 2016, 60, 6003–6012. [Google Scholar] [CrossRef] [Green Version]
- Prevaes, S.M.P.J.; de Steenhuijsen Piters, W.A.A. Concordance between upper and lower airway microbiota in infants with cystic fibrosis. Eur. Respir. J. 2017, 49, 1602235. [Google Scholar] [CrossRef] [Green Version]
- Coburn, B.; Pauline, W.; Wang, P.W. Lung microbiota across age and disease stage in cystic fibrosis. Sci. Rep. 2015, 5, 10241. [Google Scholar] [CrossRef]
- Hogan, D.A.; Willger, S.D. Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild-to-moderate cystic fibrosis lung disease. PLoS ONE 2016, 11, e0149998. [Google Scholar] [CrossRef] [Green Version]
- Raghuvanshi, R.; Vasco, K. High-resolution longitudinal dynamics of the cystic fibrosis sputum microbiome and metabolome through antibiotic therapy. Msystems 2020, 5, e00292–e00320. [Google Scholar] [CrossRef] [PubMed]
- Stanford, G.E.; Dave, K. Pulmonary exacerbations in adults with cystic fibrosis—A grown-up issue in a changing CF landscape. Chest. J. 2020, 159, 93–102. [Google Scholar] [CrossRef]
- Kate, B.; Twomey, K.B.; Alston, M. Microbiota and metabolite profiling reveal specific alterations in bacterial community structure and environment in the cystic fibrosis airway during exacerbation. PLoS ONE 2013, 8, e82432. [Google Scholar]
- Li, J.; Hao, C. Data mining of lung microbiota in cystic fibrosis patients. PLoS ONE 2016, 11, e0164510. [Google Scholar] [CrossRef] [PubMed]
- Lisa, A.; Carmody, L.A.; Zhao, J. Changes in cystic fibrosis airway microbiota at pulmonary exacerbation. Ann. Am. Thorac. Soc. 2013, 10, 179–187. [Google Scholar]
- Fodor, A.F.; Klem, E.R. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations. PLoS ONE 2012, 7, e45001. [Google Scholar] [CrossRef]
- Price, K.E.; Hampton, T.A. Unique microbial communities persist in individual cystic fibrosis patients throughout a clinical exacerbation. Microbiome 2013, 1, 27. [Google Scholar] [CrossRef] [Green Version]
- Waite, R.D.; Qureshi, M.R. Modulation of behaviour and virulence of a high alginate expressing Pseudomonas aeruginosa strain from cystic fibrosis by oral commensal bacterium Streptococcus anginosus. PLoS ONE 2017, 12, e0173741. [Google Scholar]
- Iadevaia, C.; Iacotucci, P. Incidental late diagnosis of cystic fibrosis following AH1N1 influenza virus pneumonia: A case report. J. Med. Case Rep. 2017, 11, 278. [Google Scholar] [CrossRef] [Green Version]
- Flume, P.A.; Mogayzel, P.J. Cystic fibrosis pulmonary guidelines: Treatment of pulmonary exacerbations. Am. J. Respir. Crit. Care Med. 2009, 180, 802–808. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Schloss, P.D. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc. Natl. Acad. Sci. USA 2012, 109, 5809–5814. [Google Scholar] [CrossRef] [Green Version]
- Klepac-Ceraj, V.; Lemon, K.P. Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. Environ. Microbiol. 2010, 12, 1293–1303. [Google Scholar] [CrossRef] [PubMed]
- Hahn, A.; Burrell, A. Antibiotic multidrug resistance in the cystic fibrosis airway microbiome is associated with decreased diversity. Heliyon 2018, 4, e00795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.T.; Wolter, D.J. Maintenance tobramycin primarily affects untargeted bacteria in the CF sputum microbiome. Thorax 2020, 75, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Harun, S.N.; Holford, N.H.G. Pseudomonas aeruginosa eradication therapy and risk of acquiring Aspergillus in young children with cystic fibrosis. Thorax 2019, 74, 740–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridley, K.; Condren, M. Elexacaftor-tezacaftor-ivacaftor: The first triple-combination cystic fibrosis transmembrane conductance regulator modulating therapy. J. Pediatr. Pharmacol. Ther. 2020, 25, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Reznikov, L.R.; Alaiwa, M.H.A. Antibacterial properties of the CFTR potentiator ivacaftor. J. Cyst. Fibros. 2014, 13, 515–519. [Google Scholar] [CrossRef] [Green Version]
- Payne, J.E.; Dubois, A.V. Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens. Int. J. Antimicrob. Agents 2017, 50, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Cho, D.Y.; Lim, D.J. Ivacaftor, a cystic fibrosis transmembrane conductance regulator potentiator, enhances ciprofloxacin activity against pseudomonas aeruginosa. Am. J. Rhinol. Allergy 2019, 33, 129–136. [Google Scholar] [CrossRef]
- Heltshe, S.L.; Mayer-Hamblett, N. Pseudomonas aeruginosa in cystic fibrosis patients with G551D-CFTR treated with ivacaftor. Clin. Infect. Dis. 2015, 60, 703–712. [Google Scholar] [CrossRef]
- Hisert, K.B.; Heltshe, S.L. Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections. Am. J. Respir. Crit. Care Med. 2017, 195, 1617–1628. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Dela Cruz, C.S. Challenges in understanding lung microbiome: It is not like the gut microbiome. Respirology 2020, 25, 244–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, S.; Mande, S.S. Diet, microbiota and gut-lung connection. Front. Microbiol. 2018, 9, 2147. [Google Scholar] [CrossRef] [PubMed]
- Barcik, W.; Boutin, R.C.T. The role of lung and gut microbiota in the pathology of asthma. Immunity 2020, 52, 241–255. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Li, S. The cross-talk between gut microbiota and lungs in common lung diseases. Front. Microbiol. 2020, 11, 301. [Google Scholar] [CrossRef]
- Le Noci, V.; Guglielmetti, S. Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: A strategy to promote immunosurveillance against lung metastases. Cell Rep. 2018, 24, 3528–3538. [Google Scholar] [CrossRef] [Green Version]
- Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scialo, F.; Amato, F.; Cernera, G.; Gelzo, M.; Zarrilli, F.; Comegna, M.; Pastore, L.; Bianco, A.; Castaldo, G. Lung Microbiome in Cystic Fibrosis. Life 2021, 11, 94. https://doi.org/10.3390/life11020094
Scialo F, Amato F, Cernera G, Gelzo M, Zarrilli F, Comegna M, Pastore L, Bianco A, Castaldo G. Lung Microbiome in Cystic Fibrosis. Life. 2021; 11(2):94. https://doi.org/10.3390/life11020094
Chicago/Turabian StyleScialo, Filippo, Felice Amato, Gustavo Cernera, Monica Gelzo, Federica Zarrilli, Marika Comegna, Lucio Pastore, Andrea Bianco, and Giuseppe Castaldo. 2021. "Lung Microbiome in Cystic Fibrosis" Life 11, no. 2: 94. https://doi.org/10.3390/life11020094
APA StyleScialo, F., Amato, F., Cernera, G., Gelzo, M., Zarrilli, F., Comegna, M., Pastore, L., Bianco, A., & Castaldo, G. (2021). Lung Microbiome in Cystic Fibrosis. Life, 11(2), 94. https://doi.org/10.3390/life11020094