Will Remotely Based Pulmonary Rehabilitation Water Down Its Effectiveness?
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Tele-Rehabilitation vs. Conventional Pulmonary Rehab
3.2. Tele-Rehabilitation Only (Pre-Intervention vs. Post Intervention)
3.3. Tele-Rehabilitation vs. No Rehabilitation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rochester, C.L.; Vogiatzis, I.; Holland, A.E.; Lareau, S.C.; Marciniuk, D.D.; Puhan, M.A.; Masefield, S.C.; Casaburi, R.; Clini, E. An Official American Thoracic Society/European Respiratory Society Policy Statement: Enhancing Implementation, Use, and Delivery of Pulmonary Rehabilitation. Am. J. Respir. Crit. Care Med. 2015, 192, 1373–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.C.; et al. An official American Thoracic Society/European Respiratory Society statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef]
- Bolton, C.E.; Bevan-Smith, E.F.; Blakey, J.D.; Crowe, P.; Elkin, S.L.; Garrod, R.; Greening, N.J.; Heslop, K.; Hull, J.H.; Man, W.D.-C.; et al. British Thoracic Society guideline on pulmonary rehabilitation in adults. Thorax 2013, 68 (Suppl. 2), ii1–ii30. [Google Scholar] [CrossRef] [Green Version]
- Maltais, F.; Decramer, M.; Casaburi, R.; Barreiro, E.; Burelle, Y.; Debigare, R.; Dekhuijzen, P.R.; Franssen, F.; Gayan-Ramirez, G.; Gea, J.; et al. An official American Thoracic Society/European Respiratory Society statement: Update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2014, 189, e15–e62. [Google Scholar] [CrossRef] [Green Version]
- Lacasse, Y.; Goldstein, R.; Lasserson, T.J.; Martin, S. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2006, 2, CD003793. [Google Scholar]
- Laviolette, L.; Bourbeau, J.; Bernard, S.; Lacasse, Y.; Pepin, V.; Breton, M.J.; Baltzan, M.; Rouleau, M.; Maltais, F. Assessing the impact of pulmonary rehabilitation on functional status in COPD. Thorax 2008, 63, 115–121. [Google Scholar]
- Lindenauer, P.K.; Stefan, M.S.; Pekow, P.S.; Mazor, K.M.; Priya, A.; Spitzer, K.A.; Lagu, T.C.; Pack, Q.R.; Pinto-Plata, V.M.; ZuWallack, R. Association Between Initiation of Pulmonary Rehabilitation After Hospitalization for COPD and 1-Year Survival Among Medicare Beneficiaries. JAMA. 2020, 323, 1813–1823. [Google Scholar]
- Spitzer, K.A.; Stefan, M.S.; Priya, A.; Pack, Q.R.; Pekow, P.S.; Lagu, T.; Pinto-Plata, V.M.; ZuWallack, R.L.; Lindenauer, P.K. Participation in Pulmonary Rehabilitation after Hospitalization for Chronic Obstructive Pulmonary Disease among Medicare Beneficiaries. Ann. Am. Thorac. Soc. 2019, 16, 99–106. [Google Scholar] [PubMed]
- Vercammen-Grandjean, C.; Schopfer, D.W.; Zhang, N.; Whooley, M.A. Participation in Pulmonary Rehabilitation by Veterans Health Administration and Medicare Beneficiaries After Hospitalization for Chronic Obstructive Pulmonary Disease. J. Cardiopulm. Rehabil. Prev. 2018, 38, 406–410. [Google Scholar]
- Nishi, S.P.; Zhang, W.; Kuo, Y.F.; Sharma, G. Pulmonary Rehabilitation Utilization in Older Adults With Chronic Obstructive Pulmonary Disease, 2003 to 2012. J. Cardiopulm. Rehabil. Prev. 2016, 36, 375–382. [Google Scholar] [CrossRef]
- Hayton, C.; Clark, A.; Olive, S.; Browne, P.; Galey, P.; Knights, E.; Staunton, L.; Jones, A.; Coombes, E.; Wilson, A.M. Barriers to pulmonary rehabilitation: Characteristics that predict patient attendance and adherence. Respir. Med. 2013, 107, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Young, P.; Dewse, M.; Fergusson, W.; Kolbe, J. Respiratory rehabilitation in chronic obstructive pulmonary disease: Predictors of nonadherence. Eur. Respir. J. 1999, 13, 855–859. [Google Scholar] [CrossRef] [Green Version]
- Aveyard, P.; Gao, M.; Lindson, N.; Hartmann-Boyce, J.; Watkinson, P.; Young, D.; Coupland, C.A.C.; Tan, P.S.; Clift, A.K.; Harrison, D.; et al. Association between pre-existing respiratory disease and its treatment, and severe COVID-19: A population cohort study. Lancet Respir. Med. 2021, 9, 909–923. [Google Scholar] [CrossRef]
- Holland, A.E.; Cox, N.S.; Houchen-Wolloff, L.; Rochester, C.L.; Garvey, C.; ZuWallack, R.; Nici, L.; Limberg, T.; Lareau, S.C.; Yawn, B.P.; et al. Defining Modern Pulmonary Rehabilitation. An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2021, 18, e12–e29. [Google Scholar] [CrossRef]
- Layton, A.M.; Irwin, A.M.; Mihalik, E.C.; Fleisch, E.; Keating, C.L.; DiMango, E.A.; Shah, L.; Arcasoy, S.M. Telerehabilitation Using Fitness Application in Patients with Severe Cystic Fibrosis Awaiting Lung Transplant: A Pilot Study. Int. J. Telemed. Appl. 2021, 2021, 6641853. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.; Bieler, T.; Beyer, N.; Kallemose, T.; Wilcke, J.T.; Ostergaard, L.M.; Andeassen, H.F.; Martinez, G.; Lavesen, M.; Frølich, A.; et al. Supervised pulmonary tele-rehabilitation versus pulmonary rehabilitation in severe COPD: A randomised multicentre trial. Thorax 2020, 75, 413–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutkowski, S.; Rutkowska, A.; Kiper, P.; Jastrzebski, D.; Racheniuk, H.; Turolla, A.; Szczegielniak, J.; Casaburi, R. Virtual Reality Rehabilitation in Patients with Chronic Obstructive Pulmonary Disease: A Randomized Controlled Trial. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 117–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernocchi, P.; Vitacca, M.; La Rovere, M.T.; Volterrani, M.; Galli, T.; Baratti, D.; Paneroni, M.; Campolongo, G.; Sposato, B.; Scalvini, S. Home-based telerehabilitation in older patients with chronic obstructive pulmonary disease and heart failure: A randomised controlled trial. Age Ageing 2018, 47, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Horton, E.J.; Mitchell, K.E.; Johnson-Warrington, V.; Apps, L.D.; Sewell, L.; Morgan, M.; Taylor, R.S.; Singh, S.J. Comparison of a structured home-based rehabilitation programme with conventional supervised pulmonary rehabilitation: A randomised non-inferiority trial. Thorax 2018, 73, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Vasilopoulou, M.; Papaioannou, A.I.; Kaltsakas, G.; Louvaris, Z.; Chynkiamis, N.; Spetsioti, S.; Kortianou, E.; Genimata, S.A.; Palamidas, A.; Kostikas, K.; et al. Home-based maintenance tele-rehabilitation reduces the risk for acute exacerbations of COPD, hospitalisations and emergency department visits. Eur. Respir. J. 2017, 49, 1602129. [Google Scholar] [CrossRef]
- Bourne, S.; DeVos, R.; North, M.; Chauhan, A.; Green, B.; Brown, T.; Cornelius, V.; Wilkinson, T. Online versus face-to-face pulmonary rehabilitation for patients with chronic obstructive pulmonary disease: Randomised controlled trial. BMJ Open 2017, 7, e014580. [Google Scholar] [CrossRef] [Green Version]
- Chaplin, E.; Hewitt, S.; Apps, L.; Bankart, J.; Pulikottil-Jacob, R.; Boyce, S.; Morgan, M.; Williams, J.; Singh, S. Interactive web-based pulmonary rehabilitation programme: A randomised controlled feasibility trial. BMJ Open 2017, 7, e013682. [Google Scholar] [CrossRef] [PubMed]
- Paneroni, M.; Colombo, F.; Papalia, A.; Colitta, A.; Borghi, G.; Saleri, M.; Cabiaglia, A.; Azzalini, E.; Vitacca, M. Is Telerehabilitation a Safe and Viable Option for Patients with COPD? A Feasibility Study. COPD 2015, 12, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Tabak, M.; Brusse-Keizer, M.; van der Valk, P.; Hermens, H.; Vollenbroek-Hutten, M. A telehealth program for self-management of COPD exacerbations and promotion of an active lifestyle: A pilot randomized controlled trial. Int. J. Chron. Obstruct. Pulmon. Dis. 2014, 9, 935–944. [Google Scholar] [CrossRef] [Green Version]
- Stickland, M.; Jourdain, T.; Wong, E.Y.; Rodgers, W.M.; Jendzjowsky, N.G.; Macdonald, G.F. Using Telehealth technology to deliver pulmonary rehabilitation in chronic obstructive pulmonary disease patients. Can. Respir. J. 2011, 18, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.; Knight, E.; Bland, M.; Middleton, J.; Mitchell, E.; McCrum, K.; Conway, J.; Bevan-Smith, E. Feasibility of an online platform delivery of pulmonary rehabilitation for individuals with chronic respiratory disease. BMJ Open Respir. Res. 2021, 8, e000880. [Google Scholar] [CrossRef] [PubMed]
- Paneroni, M.; Vitacca, M.; Bernocchi, P.; Bertacchini, L.; Scalvini, S. Feasibility of tele-rehabilitation in survivors of COVID-19 pneumonia. Pulmonology 2021. [Google Scholar] [CrossRef]
- Wootton, S.L.; King, M.; Alison, J.A.; Mahadev, S.; Chan, A.S.L. COVID-19 rehabilitation delivered via a telehealth pulmonary rehabilitation model: A case series. Respirol. Case Rep. 2020, 8, e00669. [Google Scholar] [CrossRef]
- Rassouli, F.; Boutellier, D.; Duss, J.; Huber, S.; Brutsche, M.H. Digitalizing multidisciplinary pulmonary rehabilitation in COPD with a smartphone application: An international observational pilot study. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 3831–3836. [Google Scholar] [CrossRef] [Green Version]
- Zanaboni, P.; Hoaas, H.; Aaroen Lien, L.; Hjalmarsen, A.; Wootton, R. Long-term exercise maintenance in COPD via telerehabilitation: A two-year pilot study. J. Telemed. Telecare 2017, 23, 74–82. [Google Scholar] [CrossRef]
- Hoaas, H.; Morseth, B.; Holland, A.E.; Zanaboni, P. Are Physical activity and Benefits Maintained After Long-Term Telerehabilitation in COPD? Int. J. Telerehabilit. 2016, 8, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Marquis, N.; Larivee, P.; Dubois, M.F.; Tousignant, M. Are improvements maintained after in-home pulmonary telerehabilitation for patients with chronic obstructive pulmonary disease? Int. J. Telerehabilt. 2014, 6, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Albores, J.; Marolda, C.; Haggerty, M.; Gerstenhaber, B.; Zuwallack, R. The use of a home exercise program based on a computer system in patients with chronic obstructive pulmonary disease. J. Cardiopulm. Rehabilt. Prev. 2013, 33, 47–52. [Google Scholar] [CrossRef]
- Holland, A.E.; Hill, C.J.; Rochford, P.; Fiore, J.; Berlowitz, D.J.; McDonald, C.F. Telerehabilitation for people with chronic obstructive pulmonary disease: Feasibility of a simple, real time model of supervised exercise training. J. Telemed. Telecare 2013, 19, 222–226. [Google Scholar] [CrossRef]
- Wardini, R.; Dajczman, E.; Yang, N.; Baltzan, M.; Prefontaine, D.; Stathatos, M.; Marciano, H.; Watson, S.; Wolkove, N. Using a virtual game system to innovate pulmonary rehabilitation: Safety, adherence and enjoyment in severe chronic obstructive pulmonary disease. Can. Respir. J. 2013, 20, 357–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tousignant, M.; Marquis, N.; Page, C.; Imukuze, N.; Metivier, A.; St-Onge, V.; Tremblay, A. In-home Telerehabilitation for Older Persons with Chronic Obstructive Pulmonary Disease: A Pilot Study. Int. J. Telerehabilt. 2012, 4, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Gerez, J.J.; Saavedra-Hernandez, M.; Anarte-Lazo, E.; Bernal-Utrera, C.; Perez-Ale, M.; Rodriguez-Blanco, C. Short-Term Effects of a Respiratory Telerehabilitation Program in Confined COVID-19 Patients in the Acute Phase: A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 7511. [Google Scholar] [CrossRef]
- Li, J.; Xia, W.; Zhan, C.; Liu, S.; Yin, Z.; Wang, J.; Chong, Y.; Zheng, C.; Fang, X.; Cheng, W.; et al. A telerehabilitation programme in post-discharge COVID-19 patients (TERECO): A randomised controlled trial. Thorax 2021. [Google Scholar] [CrossRef]
- Bhatt, S.P.; Patel, S.B.; Anderson, E.M.; Baugh, D.; Givens, T.; Schumann, C.; Sanders, J.G.; Windham, S.T.; Cutter, G.R.; Dransfield, M.T. Video Telehealth Pulmonary Rehabilitation Intervention in Chronic Obstructive Pulmonary Disease Reduces 30-Day Readmissions. Am. J. Respir. Crit. Care Med. 2019, 200, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Tsai, L.L.; McNamara, R.J.; Moddel, C.; Alison, J.A.; McKenzie, D.K.; McKeough, Z.J. Home-based telerehabilitation via real-time videoconferencing improves endurance exercise capacity in patients with COPD: The randomized controlled TeleR Study. Respirology 2017, 22, 699–707. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.; Yamabayashi, C.; Syed, N.; Kirkham, A.; Camp, P.G. Exercise Telemonitoring and Telerehabilitation Compared with Traditional Cardiac and Pulmonary Rehabilitation: A Systematic Review and Meta-Analysis. Physiother. Can. 2016, 68, 242–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garvey, C.; Singer, J.P.; Bruun, A.M.; Soong, A.; Rigler, J.; Hays, S. Moving Pulmonary Rehabilitation into the Home: A Clinical Review. J. Cardiopulm. Rehabilt. Prev. 2018, 38, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Bierman, R.T.; Kwong, M.W.; Calouro, C. State Occupational and Physical Therapy Telehealth Laws and Regulations: A 50-State Survey. Int. J. Telerehabilt. 2018, 10, 3–54. [Google Scholar] [CrossRef]
- Lundell, S.; Holmner, A.; Rehn, B.; Nyberg, A.; Wadell, K. Telehealthcare in COPD: A systematic review and meta-analysis on physical outcomes and dyspnea. Respir. Med. 2015, 109, 11–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Citation | Study Design/Purpose | Patient Disease/Sample Size | Rehab Site | Intervention | Results | Adverse Events |
---|---|---|---|---|---|---|
Tele-Rehabilitation vs. Conventional Pulmonary Rehab | ||||||
Layton et al., 2021 [15] | Cohort Study/ Feasibility and efficacy Study | Cystic Fibrosis/ n = 11 vs. n = 8 | Home | Smartphone based application | Increased adherence (p = 0.03) | Muscle pain |
Hansen et al., 2020 [16] | RCT/ Superiority trial | COPD/ n = 67 vs. 67 | Home | Real time broadcast by physiotherapist and nurse | No difference in 6MWT between groups. Higher rate of completion in the tele rehabilitation group (p < 0.01) | 2 AE’s in the Conventional PR group. |
Rutkowski et al., 2020 [17] | RCT/ Superiority trial | COPD/ n = 106 n = 34 Conventional PR n = 38 Conventional PR +VR n = 34 VR | Inpatient | Virtual game system Conventional PR with physiotherapist | PR+VR group was superior to just PR group in Arm curl (p < 0.003), chair stand (p < 0.008), Up and Go (p < 0.000), and 6MWT (p < 0.011)VR group superior to PR in Arm curl (p < 0.000), chair stand (p < 0.001) and 6MWT (p < 0.031) | Not mentioned * |
Bernocchi et al., 2018 [18] | RCT/Feasibility and efficacy Study | COPD/ n = 56 vs. n = 56 | Home | Physiotherapist weekly phone call | Improvement in 6MWT (p < 0.0040) | None reported ** |
Horton et al., 2018 [19] | RCT/ Non-inferiority trial | COPD/ n = 145 vs. n = 142 | Home | Physiotherapist weekly phone call | No improvement in CRQ dyspnea (p = 0.18) | None reported |
Vasilopoulou et al., 2017 [20] | RCT/Efficacy Trial | COPD/ n = 47 vs. n = 50 | Home | Recorded session by physiotherapist, exercise scientist | Home based PR and Conventional PR decreased COPD exacerbation and hospitalization when compared to pharmacotherapy (p < 0.001) | Not mentioned |
Bourne et al., 2017 [21] | RCT/ Non-inferiority trial | COPD/ n = 64 vs. n = 26 | Home | Pre-recorded session by a physiotherapist | Online PR was non-inferior to Conventional PR in 6MWT (p = 0.098) and CAT (p = 0.373) | Back pain and muscular pain |
Chaplin et al., 2017 [22] | RCT/Feasibility and efficacy trial | COPD/ n = 51 vs. n = 52 | Home | Pre-recorded session physiotherapist | No significant difference in the CRQ dyspnea (p > 0.05), ESWT (p > 0.05) | Not mentioned |
Paneroni et al., 2015 [23] | Cohort Study/ Feasibility and Efficacy Study | COPD/ n = 18 vs. n = 18 | Home | Real time video conferencing with the physiotherapist | Improvement in physical activity (steps per day) (p < 0.0002) No statistically significant difference in 6MWT, SGRQ or mMRC | None reported |
Tabak et al., 2014 [24] | Cohort Study/ Feasibility and Efficacy Study | COPD/n = 15 vs. n = 14 | Home | Pre-recorded session by physiotherapist | Improvement in mMRC scale (p < 0.03) | Not mentioned |
Stickland et al., 2011 [25] | Cohort Study/ Efficacy Study | COPD/ n = 147 vs. n = 262 | Satellite Center under supervision | Real time video conferencing with respiratory therapist | Both telehealth PR and Conventional PR showed improvement in SGRQ (p < 0.05) | Not mentioned |
Tele-rehabilitation Alone (Pre vs. Post Intervention) | ||||||
Lewis et al., 2021 [26] | Cohort Study/ Efficacy and Feasibility Study | COPD/ n = 17 | Home | Physiotherapist by real time video conferencing | Improvements in 1 min STS (p = 0.004), GAD (p = 0.023), PHQ-9 (p = 0.029), CRQ dyspnea (p = 0.001), CRQ fatigue (p = 0.004), CRQ emotion (p = 0.0002), CRQ mastery (p = 0.001) | None reported |
Paneroni et al., 2021 [27] | Cohort Study/ Efficacy and Feasibility Study | COVID-19/ n = 25 | Home | Twice a week call by a physiotherapist | Improvement in STS (p = 0.003) and 6MWT (p = 0.0006) | None Reported |
Wootton et al., 2020 [28] | Case Series | COVID-19/ n = 3 | Home | Weekly call by physiotherapist | Improvement in 1 min and 5 min STS | Not mentioned |
Rassouli et al., 2018 [29] | Cohort Study/Efficacy and Feasibility Study | COPD/n = 34 | Home | Smartphone application; pre-recorded videos | Improvement in CAT scores (p = 0.008) Improvement in CRQ fatigue (p < 0.001), mastery (p < 0.001) and emotion (p < 0.001). | Not mentioned |
Zanaboni et al., 2017 [30] | Cohort Study/ Efficacy and Feasibility study | COPD/ n = 10 | Home | Real time video conferencing with Physiotherapist | Improvement in 6MWT, CAT (p = 0.022) scores | Not mentioned |
Hoaas et al., 2016 [31] | Cohort Study/ Efficacy and Feasibility Study | COPD/n = 10 | Home | Pre-recorded session by physiotherapist | Decrease in physical activity (Steps per day) 1 year after a 2-year intervention (p = 0.039) | Not mentioned |
Marquis et al., 2014 [32] | Cohort Study/ Efficacy and Feasibility Study | COPD/ n = 26 | Home | Combined Real-time video conferencing by physiotherapists and unsupervised sessions | Improvement in 6MWT (p < 0.001), CET (p = 0.003) and CRQ (p < 0.001) at 8 weeks but not sustained until 24-week follow-up | Not mentioned |
Albores et al., 2013 [33] | Cohort Study/ Efficacy and Feasibility Study | COPD/ n = 25 | Home | Virtual Game system | Improvement in ESWT (p = 0.005), arm-lift (p = 0.03), sit to stand repetitions (p = 0.03) and CRQ emotion scores (p = 0.02) | Not mentioned |
Holland et al., 2013 [34] | Cohort Study/ Feasibility Study | COPD/ n = 8 | Home | Real-time videoconferencing with physiotherapist | Improvement in 6MWT, CRQ score |
Minor adverse events were desaturation < 88% (n=1) & heart rate >150 BPM(n=1) |
Wardini et al., 2013 [35] | Cohort Study/ Feasibility Study | COPD/ n = 32 | Inpatient conventional + virtual | Virtual game system | Increased enjoyment using VAS Increased adherence | None reported |
Tousignant et al., 2012 [36] | Cohort Study/ Feasibility Study | COPD/n = 3 | Home | Real time videoconferencing with physiotherapist | Improvement in 6MWT for 2 out of 3 participants | Not mentioned |
Tele-rehabilitation vs. No Rehabilitation | ||||||
Gonzalez-Gerez et al., 2021 [37] | RCT/ Feasibility and Efficacy Trial | COVID-19/ n = 19 vs. n = 19 | Home | Twice weekly calls by physiotherapist | Improvement in 6MWT (p < 0.001) and dyspnea perception using Borg scale (p < 0.001) | None Reported |
Li et al., 2021 [38] | RCT/ Efficacy Trial | COVID-19/ n = 59 vs. n = 61 | Home | Smartphone-based application | Improvement in 6MWT (p < 0.001), mMRC (p < 0.001), LMS (p < 0.001) and SF-12 PCS (p < 0.001) | None reported |
Bhatt et al., 2019 [39] | Cohort Study/ Feasibility and Efficacy Study | COPD/ n = 80 vs. n = 160 | Home | Physiotherapist by real-time video conferencing | Decreased 30-day all-cause mortality (p = 0.013) and readmissions due to AECOPD (p = 0.04) | None reported |
Tsai, 2017 [40] | RCT/ Efficacy Trial | COPD/ n = 37 vs. n = 37 | Home | Real-time broadcast by physiotherapist | Improvement in ESWT (p < 0.001), self-efficacy (p < 0.007) and CRQ (p = 0.07) | Not mentioned |
Outcome | Improved a | Inferior b | Not Different c | Not Inferior d |
---|---|---|---|---|
6MWT | Rutkowski et al. [17], Bernocchi et al. [18] | Hansen et al. [16], Paneroni et al. [23] | Bourne et al. [21] | |
CRQ dyspnea | Horton et al. [19] | Chaplin et al. [22] | ||
ESWT | Chaplin et al. [22] | |||
mMRC | Tabak et al. [24] | Paneroni et al. [23] | ||
SGRQ | Stickland et al. [25] —so did traditional | Paneroni et al. [23] | ||
CAT | Bourne et al. [21] | |||
Arm Curl | Rutkowski et al. [17] | |||
Chair Stand | Rutkowski et al. [17] | |||
Up and Go | Rutkowski et al. [17] | |||
Physical Activity (steps per day) | Paneroni et al. [23] |
Outcome | Improved | No Improvement |
---|---|---|
6MWT | Paneroni et al. [27] Zanaboni et al. [30] Marquis et al. [32] Holland et al. [34] Tousignant et al. [36] | |
CRQ dyspnea | Marquis et al. [32] Holland et al. [34] Lewis et al. [26] | |
ESWT | Albores et al. [33] | |
CAT | Zanaboni et al. [30] Rassouli et al. [29] | |
Arm Curl | Albores et al. [33] | |
Chair Stand | Lewis et al. [26] Paneroni et al. [27] Wootton et al. [28] Albores et al. [33] | |
Physical Activity (steps per day) | Hoaas et al. [31] |
Outcome | Improved | Not Different |
---|---|---|
6MWT | Gonzalez-Gerez et al. [37] Li et al. [38] | Tsai et al. [40] |
Borg dyspnea scale | Gonzalez-Gerez et al. [37] | |
ESWT | Tsai et al. [40] | |
mMRC | Li et al. [38] Tsai et al. [40] | |
Static Squat Test | Li et al. [38] | |
HADS | Tsai et al. [40] | |
CRQ | Tsai et al. [40] | |
30-day all-cause mortality | Bhatt et al. [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawal, H.; Cornelison, S.D.; Flynn, S.M.; Ohar, J.A. Will Remotely Based Pulmonary Rehabilitation Water Down Its Effectiveness? Life 2021, 11, 1270. https://doi.org/10.3390/life11111270
Rawal H, Cornelison SD, Flynn SM, Ohar JA. Will Remotely Based Pulmonary Rehabilitation Water Down Its Effectiveness? Life. 2021; 11(11):1270. https://doi.org/10.3390/life11111270
Chicago/Turabian StyleRawal, Himanshu, Sharon D. Cornelison, Sheryl M. Flynn, and Jill A. Ohar. 2021. "Will Remotely Based Pulmonary Rehabilitation Water Down Its Effectiveness?" Life 11, no. 11: 1270. https://doi.org/10.3390/life11111270
APA StyleRawal, H., Cornelison, S. D., Flynn, S. M., & Ohar, J. A. (2021). Will Remotely Based Pulmonary Rehabilitation Water Down Its Effectiveness? Life, 11(11), 1270. https://doi.org/10.3390/life11111270