Physicochemical Parameters Limiting Growth of Debaryomyces hansenii in Solutions of Hygroscopic Compounds and Their Effects on the Habitability of Martian Brines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organisms and Culture Conditions
2.2. Determination of Solute Tolerances
2.3. Water Activity Measurements
3. Results
4. Discussion
4.1. Growth-Limiting Parameters
4.2. Implications for the Habitability of Martian Brines
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Solute | Ctol | Density at Ctol | MIC | aw at MIC | Eutectic Point [5,55,56,57,58,59] | DRH [9,60,61,62,63,64] | |
---|---|---|---|---|---|---|---|
[mol/kg] | [g/mL] | [mol/kg] | Conc. [wt%] | Temp. [°C] | [%] | ||
Salts | |||||||
NaCl | 4.0 | 1.12 | 4.5 | 0.830 | 23.3 | −21 | 75 |
NH4Cl | 5.0 | 1.05 | 5.5 | 0.842 | 18.7 | −16 | 77 |
CaCl2 | 1.5 | 1.08 | 2.0 | 0.878 | 32.3 | −51 | 30 |
MgCl2 | 2.0 | 1.12 | 2.5 | 0.795 | 21.0 | −33 | 33 |
KCl | (4.5) | 1.15 | – | – | 19.7 | −10 | 84 |
NaClO3 | 5.5 | 1.29 | 6.0 | 0.813 | 39.8 | −18 | 68 |
NaClO4 | 2.5 | 1.14 | 3.0 | 0.895 | 52.7 | −34 | 51 |
Ca(ClO4)2 | 0.5 | 1.05 | 1.0 | 0.943 | 50.1 | −78 | 13 |
Mg(ClO4)2 | 1.0 | 1.10 | 1.5 | 0.894 | 43.9 | −58 | 42 |
NaNO3 | 6.0 | 1.22 | 6.5 | 0.835 | 38.6 | −17 | 72 |
NH4NO3 | 6.0 | 1.13 | 6.5 | 0.875 | 42.7 | −17 | 59 |
Ca(NO3)2 | 1.5 | 1.15 | 2.0 | 0.919 | 29.9 | −28 | 47 |
Mg(NO3)2 | 1.0 | 1.10 | 1.5 | 0.910 | 24.6 | −30 | 53 |
(NH4)2SO4 | 4.5 | 1.20 | 5.0 | 0.842 | 39.8 | −19 | 79 |
MgSO4 | (2.5) | 1.25 | – | – | 17.0 | −4 | 91 |
Organic solutes | |||||||
Sucrose | (5) | 1.28 | – | – | 58.5 | −13 | 85 |
Fructose | 9.0 | 1.28 | 9.5 | 0.816 | 44.7 | −10 | 62 |
Glycerol | 10.0 | 1.12 | 11.0 a | 0.814 | 66.7 | −47 | – |
References
- Bastida, F.; Eldridge, D.J.; García, C.; Kenny Png, G.; Bardgett, R.D.; Delgado-Baquerizo, M. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 2021, 15, 2081–2091. [Google Scholar] [CrossRef]
- Pointing, S.B.; Chan, Y.; Lacap, D.C.; Lau, M.C.Y.; Jurgens, J.A.; Farrell, R.L. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl. Acad. Sci. USA 2009, 106, 19964–19969. [Google Scholar] [CrossRef] [Green Version]
- Maus, D.; Heinz, J.; Schirmack, J.; Airo, A.; Kounaves, S.P.; Wagner, D.; Schulze-Makuch, D. Methanogenic Archaea Can Produce Methane in Deliquescence-Driven Mars Analog Environments. Sci. Rep. 2020, 10, 1758. [Google Scholar] [CrossRef] [PubMed]
- Davila, A.F.; Hawes, I.; Ascaso, C.; Wierzchos, J. Salt deliquescence drives photosynthesis in the hyperarid Atacama Desert. Environ. Microbiol. Rep. 2013, 5, 583–587. [Google Scholar] [CrossRef]
- Möhlmann, D.; Thomsen, K. Properties of cryobrines on Mars. Icarus 2011, 212, 123–130. [Google Scholar] [CrossRef]
- Hecht, M.H.; Kounaves, S.P.; Quinn, R.C.; West, S.J.; Young, S.M.M.; Ming, D.W.; Catling, D.C.; Clark, B.C.; Boynton, W.V.; Hoffman, J.; et al. Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 2009, 325, 64–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biver, N.; Bockelée-Morvan, D.; Moreno, R.; Crovisier, J.; Colom, P.; Lis, D.C.; Sandqvist, A.; Boissier, J.; Despois, D.; Milam, S.N. Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy). Sci. Adv. 2015, 1, e1500863. [Google Scholar] [CrossRef] [Green Version]
- Sohl, F. Revealing Titan’s Interior. Science 2010, 327, 1338–1339. [Google Scholar] [CrossRef] [PubMed]
- Winston, P.W.; Bates, D.H. Saturated Solutions For the Control of Humidity in Biological Research. Ecology 1960, 41, 232–237. [Google Scholar] [CrossRef]
- Stevenson, A.; Cray, J.A.; Williams, J.P.; Santos, R.; Sahay, R.; Neuenkirchen, N.; McClure, C.D.; Grant, I.R.; Houghton, J.; Quinn, J.P.; et al. Is there a common water-activity limit for the three domains of life? ISME J. 2015, 9, 1333–1351. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, A.; Hamill, P.G.; Medina, Á.; Kminek, G.; Rummel, J.D.; Dijksterhuis, J.; Timson, D.J.; Magan, N.; Leong, S.-L.L.; Hallsworth, J.E. Glycerol enhances fungal germination at the water-activity limit for life. Environ. Microbiol. 2017, 19, 947–967. [Google Scholar] [CrossRef] [Green Version]
- Fox-Powell, M.G.; Hallsworth, J.E.; Cousins, C.R.; Cockell, C.S. Ionic Strength Is a Barrier to the Habitability of Mars. Astrobiology 2016, 16, 427–442. [Google Scholar] [CrossRef] [PubMed]
- Hallsworth, J.E.; Heim, S.; Timmis, K.N. Chaotropic solutes cause water stress in Pseudomonas putida. Environ. Microbiol. 2003, 5, 1270–1280. [Google Scholar] [CrossRef]
- Hallsworth, J.E.; Yakimov, M.M.; Golyshin, P.N.; Gillion, J.L.M.; D’Auria, G.; de Lima Alves, F.; La Cono, V.; Genovese, M.; McKew, B.A.; Hayes, S.L.; et al. Limits of life in MgCl2-containing environments: Chaotropicity defines the window. Environ. Microbiol. 2007, 9, 801–813. [Google Scholar] [CrossRef]
- De Lima Alves, F.; Stevenson, A.; Baxter, E.; Gillion, J.L.M.; Hejazi, F.; Hayes, S.; Morrison, I.E.G.; Prior, B.A.; McGenity, T.J.; Rangel, D.E.N.; et al. Concomitant osmotic and chaotropicity-induced stresses in Aspergillus wentii: Compatible solutes determine the biotic window. Curr. Genet. 2015, 61, 457–477. [Google Scholar] [CrossRef]
- Heinz, J.; Schirmack, J.; Airo, A.; Kounaves, S.P.; Schulze-Makuch, D. Enhanced Microbial Survivability in Subzero Brines. Astrobiology 2018, 18, 1171–1180. [Google Scholar] [CrossRef] [Green Version]
- Waajen, A.C.; Heinz, J.; Airo, A.; Schulze-Makuch, D. Physicochemical Salt Solution Parameters Limit the Survival of Planococcus halocryophilus in Martian Cryobrines. Front. Microbiol. 2020, 11, 1284. [Google Scholar] [CrossRef]
- Prista, C.; Michán, C.; Miranda, I.M.; Ramos, J. The halotolerant Debaryomyces hansenii, the Cinderella of non-conventional yeasts. Yeast 2016, 33, 523–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinz, J.; Krahn, T.; Schulze-Makuch, D. A New Record for Microbial Perchlorate Tolerance: Fungal Growth in NaClO4 Brines and its Implications for Putative Life on Mars. Life 2020, 10, 53. [Google Scholar] [CrossRef]
- Heinz, J.; Waajen, A.C.; Airo, A.; Alibrandi, A.; Schirmack, J.; Schulze-Makuch, D. Bacterial Growth in Chloride and Perchlorate Brines: Halotolerances and Salt Stress Responses of Planococcus halocryophilus. Astrobiology 2019, 19, 1377–1387. [Google Scholar] [CrossRef] [Green Version]
- Neves, M.L.; Oliveira, R.P.; Lucas, C.M. Metabolic flux response to salt-induced stress in the halotolerant yeast Debaryomyces hansenii. Microbiology 1997, 143, 1133–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oren, A. Microbial life at high salt concentrations: Phylogenetic and metabolic diversity. Saline Syst. 2008, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- De Baere, L.A.; Devocht, M.; van Assche, P.; Verstraete, W. Influence of high NaCl and NH4Cl salt levels on methanogenic associations. Water Res. 1984, 18, 543–548. [Google Scholar] [CrossRef]
- Zajc, J.; Džeroski, S.; Kocev, D.; Oren, A.; Sonjak, S.; Tkavc, R.; Gunde-Cimerman, N. Chaophilic or chaotolerant fungi: A new category of extremophiles? Front. Microbiol. 2014, 5, 708. [Google Scholar] [CrossRef] [Green Version]
- Al Soudi, A.F.; Farhat, O.; Chen, F.; Clark, B.C.; Schneegurt, M.A. Bacterial growth tolerance to concentrations of chlorate and perchlorate salts relevant to Mars. Int.J. Astrobiol. 2017, 16, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Laye, V.J.; DasSarma, S. An Antarctic Extreme Halophile and Its Polyextremophilic Enzyme: Effects of Perchlorate Salts. Astrobiology 2018, 18, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Kamekura, M.; Onishi, H. Cell-associated cations of the moderate halophile Micrococcus varians ssp. halophilus grown in media of high concentrations of LiCl, NaCl, KCl, RbCl, or CsCl. Can. J. Microbiol. 1982, 28, 155–161. [Google Scholar] [CrossRef]
- Williams, J.P.; Hallsworth, J.E. Limits of life in hostile environments: No barriers to biosphere function? Environ. Microbiol. 2009, 11, 3292–3308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, T.; Walter, B.; Wirtz, A.; Burkovski, A. Ammonium toxicity in bacteria. Curr. Microbiol. 2006, 52, 400–406. [Google Scholar] [CrossRef] [Green Version]
- Wilks, J.M.; Chen, F.; Clark, B.C.; Schneegurt, M.A. Bacterial growth in saturated and eutectic solutions of magnesium sulphate and potassium chlorate with relevance to Mars and the ocean worlds. Int. J. Astrobiol. 2019, 18, 502–509. [Google Scholar] [CrossRef]
- Praphailong, W.; Fleet, G.H. Debaryomyces. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 1999; pp. 515–520. ISBN 9780122270703. [Google Scholar]
- Butinar, L.; Santos, S.; Spencer-Martins, I.; Oren, A.; Gunde-Cimerman, N. Yeast diversity in hypersaline habitats. FEMS Microbiol. Lett. 2005, 244, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Cray, J.A.; Russell, J.T.; Timson, D.J.; Singhal, R.S.; Hallsworth, J.E. A universal measure of chaotropicity and kosmotropicity. Environ. Microbiol. 2013, 15, 287–296. [Google Scholar] [CrossRef]
- Hofmeister, F. Zur Lehre von der Wirkung der Salze. Arch. Experiment. Pathol. Pharmakol. 1888, 24, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Oren, A. Life in Magnesium- and Calcium-Rich Hypersaline Environments: Salt Stress by Chaotropic Ions. In Polyextremophiles: Life Under Multiple Forms of Stress; Seckbach, J., Oren, A., Stan-Lotter, H., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 215–232. ISBN 978-94-007-6487-3. [Google Scholar]
- Hyde, A.M.; Zultanski, S.L.; Waldman, J.H.; Zhong, Y.-L.; Shevlin, M.; Peng, F. General Principles and Strategies for Salting-Out Informed by the Hofmeister Series. Org. Process Res. Dev. 2017, 21, 1355–1370. [Google Scholar] [CrossRef] [Green Version]
- Haynes, W.M. CRC Handbook of Chemistry and Physics, 93rd ed.; CRC Press: London, UK, 2016; ISBN 9781439880494. [Google Scholar]
- Urbansky, E.T. Perchlorate Chemistry: Implications for Analysis and Remediation. Bioremediation J. 1998, 2, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Busti, S.; Mapelli, V.; Tripodi, F.; Sanvito, R.; Magni, F.; Coccetti, P.; Rocchetti, M.; Nielsen, J.; Alberghina, L.; Vanoni, M. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast. Sci. Rep. 2016, 6, 27942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kounaves, S.P.; Hecht, M.H.; Kapit, J.; Quinn, R.C.; Catling, D.C.; Clark, B.C.; Ming, D.W.; Gospodinova, K.; Hredzak, P.; McElhoney, K.; et al. Soluble sulfate in the martian soil at the Phoenix landing site. Geophys. Res. Lett. 2010, 37, L09201. [Google Scholar] [CrossRef] [Green Version]
- Stern, J.C.; Sutter, B.; Freissinet, C.; Navarro-González, R.; McKay, C.P.; Archer, P.D.; Buch, A.; Brunner, A.E.; Coll, P.; Eigenbrode, J.L.; et al. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars. Proc. Natl. Acad. Sci. USA 2015, 112, 4245–4250. [Google Scholar] [CrossRef] [Green Version]
- Kounaves, S.P.; Carrier, B.L.; O’Neil, G.D.; Stroble, S.T.; Claire, M.W. Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics. Icarus 2014, 229, 206–213. [Google Scholar] [CrossRef]
- Clark, B.C.; Morris, R.V.; McLennan, S.M.; Gellert, R.; Jolliff, B.; Knoll, A.H.; Squyres, S.W.; Lowenstein, T.K.; Ming, D.W.; Tosca, N.J.; et al. Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sci. Lett. 2005, 240, 73–94. [Google Scholar] [CrossRef]
- Schulze-Makuch, D.; Wagner, D.; Kounaves, S.P.; Mangelsdorf, K.; Devine, K.G.; de Vera, J.-P.; Schmitt-Kopplin, P.; Grossart, H.-P.; Parro, V.; Kaupenjohann, M.; et al. Transitory microbial habitat in the hyperarid Atacama Desert. Proc. Natl. Acad. Sci. USA 2018, 115, 2670–2675. [Google Scholar] [CrossRef] [Green Version]
- Kounaves, S.P.; Stroble, S.T.; Anderson, R.M.; Moore, Q.; Catling, D.C.; Douglas, S.; McKay, C.P.; Ming, D.W.; Smith, P.H.; Tamppari, L.K.; et al. Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications. Environ. Sci. Technol. 2010, 44, 2360–2364. [Google Scholar] [CrossRef]
- Clark, B.C.; Kounaves, S.P. Evidence for the distribution of perchlorates on Mars. Int. J. Astrobiol. 2016, 15, 311–318. [Google Scholar] [CrossRef]
- Hanley, J.; Chevrier, V.F.; Berget, D.J.; Adams, R.D. Chlorate salts and solutions on Mars. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Toner, J.D.; Catling, D.C. Chlorate brines on Mars: Implications for the occurrence of liquid water and deliquescence. Earth Planet. Sci. Lett. 2018, 497, 161–168. [Google Scholar] [CrossRef]
- Price, P.B.; Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl. Acad. Sci. USA 2004, 101, 4631–4636. [Google Scholar] [CrossRef] [Green Version]
- Collins, K.D.; Washabaugh, M.W. The Hofmeister effect and the behaviour of water at interfaces. Q. Rev. Biophys. 1985, 18, 323–422. [Google Scholar] [CrossRef] [PubMed]
- Mansure, J.J.C.; Panek, A.D.; Crowe, L.M.; Crowe, J.H. Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochim. Biophys. Acta BBA Biomembr. 1994, 1191, 309–316. [Google Scholar] [CrossRef]
- Taylor, L.S.; York, P.; Williams, A.C.; Edwards, H.G.M.; Mehta, V.; Jackson, G.S.; Badcoe, I.G.; Clarke, A.R. Sucrose reduces the efficiency of protein denaturation by a chaotropic agent. Biochim. Biophys. Acta BBA Protein Struct. Mol. Enzymol. 1995, 1253, 39–46. [Google Scholar] [CrossRef]
- Morozova, D.; Wagner, D. Stress response of methanogenic archaea from Siberian permafrost compared with methanogens from nonpermafrost habitats. FEMS Microbiol. Ecol. 2007, 61, 16–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, J.P.; Megaw, J.; Magill, C.L.; Nowotarski, K.; Williams, J.P.; Bhaganna, P.; Linton, M.; Patterson, M.F.; Underwood, G.J.C.; Mswaka, A.Y.; et al. Solutes determine the temperature windows for microbial survival and growth. Proc. Natl. Acad. Sci. USA 2010, 107, 7835–7840. [Google Scholar] [CrossRef] [Green Version]
- Hennings, E. Cryo Brines: Phasengleichgewichte von Salz-Wasser-Systemen Bei Tiefen Temperaturen. Ph.D. Thesis, TU Bergakademie Freiberg, Freiberg, Germany, 2014. [Google Scholar]
- Li, D.; Zeng, D.; Yin, X.; Han, H.; Guo, L.; Yao, Y. Phase diagrams and thermochemical modeling of salt lake brine systems. II. NaCl+H2O, KCl+H2O, MgCl2+H2O and CaCl2+H2O systems. Calphad 2016, 53, 78–89. [Google Scholar] [CrossRef]
- Chudotvortsev, I.G.; Yatsenko, O.B. Concentration and temperature of eutectic points in glucose-water and saccharose-water systems, determined by the method of fractional melting of ice. Russ. J. Appl. Chem. 2007, 80, 201–205. [Google Scholar] [CrossRef]
- Young, F.E.; Jones, F.T.; Lewis, H.J. D-Fructose–Water Phase Diagram. J. Phys. Chem. 1952, 56, 1093–1096. [Google Scholar] [CrossRef]
- Lane, L.B. Freezing Points of Glycerol and Its Aqueous Solutions. Ind. Eng. Chem. 1925, 17, 924. [Google Scholar] [CrossRef]
- Greenspan, L. Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stan. Sect. A 1977, 81A, 89–96. [Google Scholar] [CrossRef]
- Cohen, M.D.; Flagan, R.C.; Seinfeld, J.H. Studies of concentrated electrolyte solutions using the electrodynamic balance. 1. Water activities for single-electrolyte solutions. J. Phys. Chem. 1987, 91, 4563–4574. [Google Scholar] [CrossRef]
- Nuding, D.L.; Rivera-Valentin, E.G.; Davis, R.D.; Gough, R.V.; Chevrier, V.F.; Tolbert, M.A. Deliquescence and efflorescence of calcium perchlorate: An investigation of stable aqueous solutions relevant to Mars. Icarus 2014, 243, 420–428. [Google Scholar] [CrossRef]
- Gough, R.V.; Chevrier, V.F.; Tolbert, M.A. Formation of liquid water at low temperatures via the deliquescence of calcium chloride: Implications for Antarctica and Mars. Planet. Space Sci. 2016, 131, 79–87. [Google Scholar] [CrossRef]
- Fernanders, M.S.; Gough, R.V.; Chevrier, V.F.; Schiffman, Z.R.; Ushijima, S.B.; Martinez, G.M.; Rivera-Valentín, E.G.; Archer, P.D.; Clark, J.V.; Sutter, B.; et al. Water uptake by chlorate salts under Mars-relevant conditions. Icarus 2021, 371, 114715. [Google Scholar] [CrossRef]
Solute | Solute Tolerance | I | aw | Literature Solute Tolerances [mol/L] | |||
---|---|---|---|---|---|---|---|
[mol/kg] | [mol/L] | [wt%] | [mol/kg] | D. hansenii | Other Organisms a | ||
Salts | |||||||
NaCl | 4.0 | 3.6 | 18.9 | 4 | 0.854 | 4.0 [21] | 6.1 c Hs [22] |
NH4Cl | 5.0 | 4.1 | 21.1 | 5 | 0.856 | – | 1.5 M [23] |
CaCl2 | 1.5 | 1.4 | 14.3 | 4.5 | 0.922 | – | 2.1 Ec [24] |
MgCl2 | 2.0 | 1.9 | 16.0 | 6 | 0.849 | – | 2.0 Af [24] |
KCl | (4.5) | (3.9) | (25.1) | (4.5) | (0.852) | 4.0 [21] | 4.0 c Aw [15] |
NaClO3 | 5.5 | 4.5 | 36.9 | 5.5 | 0.839 | – | 2.8 Hv [25] |
NaClO4 | 2.5 | 2.2 | 23.4 | 2.5 | 0.926 | 2.1 [19] b | 1.1 Ph [20] |
Ca(ClO4)2 | 0.5 | 0.5 | 10.7 | 1.5 | 0.975 | – | 0.1 Ph [20] |
Mg(ClO4)2 | 1.0 | 0.9 | 18.2 | 3 | 0.944 | – | 0.3 Hl [26] |
NaNO3 | 6.0 | 4.9 | 33.8 | 6 | 0.844 | – | 3.5 Mv [27] |
NH4NO3 | 6.0 | 4.6 | 32.4 | 6 | 0.880 | – | 5.2 JH [28] |
Ca(NO3)2 | 1.5 | 1.4 | 19.8 | 4.5 | 0.931 | – | – |
Mg(NO3)2 | 1.0 | 1.0 | 12.9 | 3 | 0.944 | – | – |
(NH4)2SO4 | 4.5 | 3.4 | 37.3 | 13.5 | 0.864 | – | 1.0 Cg [29] |
MgSO4 | (2.5) | (2.4) | (23.1) | (10) | (0.946) | – | 2.7 c H [30] |
Organic solutes | |||||||
Sucrose | (5) | (2.4) | (63.1) | – | (0.872) | ~1.3 [31] | 2.3 Ea [28] |
Fructose | 9.0 | 4.4 | 61.9 | – | 0.828 | – | 4.4 Ea [28] |
Glycerol | 10.0 | 5.4 | 47.9 | – | 0.827 | ≥2.5 [32] | 7.6 Xb [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heinz, J.; Rambags, V.; Schulze-Makuch, D. Physicochemical Parameters Limiting Growth of Debaryomyces hansenii in Solutions of Hygroscopic Compounds and Their Effects on the Habitability of Martian Brines. Life 2021, 11, 1194. https://doi.org/10.3390/life11111194
Heinz J, Rambags V, Schulze-Makuch D. Physicochemical Parameters Limiting Growth of Debaryomyces hansenii in Solutions of Hygroscopic Compounds and Their Effects on the Habitability of Martian Brines. Life. 2021; 11(11):1194. https://doi.org/10.3390/life11111194
Chicago/Turabian StyleHeinz, Jacob, Vita Rambags, and Dirk Schulze-Makuch. 2021. "Physicochemical Parameters Limiting Growth of Debaryomyces hansenii in Solutions of Hygroscopic Compounds and Their Effects on the Habitability of Martian Brines" Life 11, no. 11: 1194. https://doi.org/10.3390/life11111194
APA StyleHeinz, J., Rambags, V., & Schulze-Makuch, D. (2021). Physicochemical Parameters Limiting Growth of Debaryomyces hansenii in Solutions of Hygroscopic Compounds and Their Effects on the Habitability of Martian Brines. Life, 11(11), 1194. https://doi.org/10.3390/life11111194