# Context-Dependent Stability and Robustness of Genetic Toggle Switches with Leaky Promoters

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Mathematical Model to Account for the Scarcity of Resources

#### 2.2. Stability Analysis

#### 2.3. Robustness Analysis

#### 2.4. Population-Level Analysis

#### 2.5. Context Effects

## 3. Results

#### 3.1. Stability Analysis

#### 3.2. Robustness Analysis

#### 3.3. Population-Level Analysis

#### 3.4. Context Effects

## 4. Discussion

## Supplementary Materials

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Benner, S.A.; Sismour, A.M. Synthetic biology. Nat. Rev. Genet.
**2005**, 6, 533–543. [Google Scholar] [CrossRef] [PubMed] - Qian, Y.; McBride, C.; Del Vecchio, D. Programming Cells to Work for Us. Annu. Rev. Control Robot. Auton. Syst.
**2018**, 1, 411–440. [Google Scholar] [CrossRef][Green Version] - Wang, X.; Rai, N.; Merchel Piovesan Pereira, B.; Eetemadi, A.; Tagkopoulos, I. Accelerated knowledge discovery from omics data by optimal experimental design. Nat. Commun.
**2020**, 11, 5026. [Google Scholar] [CrossRef] - Angenent-Mari, N.M.; Garruss, A.S.; Soenksen, L.R.; Church, G.; Collins, J.J. A deep learning approach to programmable RNA switches. Nat. Commun.
**2020**, 11, 5057. [Google Scholar] [CrossRef] - Grozinger, L.; Amos, M.; Gorochowski, T.E.; Carbonell, P.; Oyarzún, D.A.; Stoof, R.; Fellermann, H.; Zuliani, P.; Tas, H.; Goñi-Moreno, A. Pathways to cellular supremacy in biocomputing. Nat. Commun.
**2019**, 10, 5250. [Google Scholar] [CrossRef] - Charbonneau, M.R.; Isabella, V.M.; Li, N.; Kurtz, C.B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun.
**2020**, 11, 1738. [Google Scholar] [CrossRef] [PubMed][Green Version] - Peralta-Yahya, P.P.; Zhang, F.; del Cardayre, S.B.; Keasling, J.D. Microbial engineering for the production of advanced biofuels. Nature
**2012**, 488, 320–328. [Google Scholar] [CrossRef] - Arpino, J.A.J.; Hancock, E.J.; Anderson, J.; Barahona, M.; Stan, G.B.V.; Papachristodoulou, A.; Polizzi, K. Tuning the dials of Synthetic Biology. Microbiology
**2013**, 159, 1236–1253. [Google Scholar] [CrossRef] [PubMed][Green Version] - Smanski, M.J.; Bhatia, S.; Zhao, D.; Park, Y.; Woodruff, L.B.A.; Giannoukos, G.; Ciulla, D.; Busby, M.; Calderon, J.; Nicol, R.; et al. Functional optimization of gene clusters by combinatorial design and assembly. Nat. Biotechnol.
**2014**, 32, 1241–1249. [Google Scholar] [CrossRef] [PubMed] - Cardinale, S.; Arkin, A.P. Contextualizing context for synthetic biology–identifying causes of failure of synthetic biological systems. Biotechnol. J.
**2012**, 7, 856–866. [Google Scholar] [CrossRef] - Gyorgy, A.; Del Vecchio, D. Modular Composition of Gene Transcription Networks. PLoS Comput. Biol.
**2014**, 10, e1003486. [Google Scholar] [CrossRef] - Yeung, E.; Dy, A.J.; Martin, K.B.; Ng, A.H.; Del Vecchio, D.; Beck, J.L.; Collins, J.J.; Murray, R.M. Biophysical Constraints Arising from Compositional Context in Synthetic Gene Networks. Cell Syst.
**2017**, 5, 11–24.e12. [Google Scholar] [CrossRef] [PubMed][Green Version] - Qian, Y.; Huang, H.H.; Jiménez, J.I.; Del Vecchio, D. Resource Competition Shapes the Response of Genetic Circuits. ACS Synth. Biol.
**2017**, 6, 1263–1272. [Google Scholar] [CrossRef] [PubMed][Green Version] - Scott, M.; Gunderson, C.W.; Mateescu, E.M.; Zhang, Z.; Hwa, T. Interdependence of Cell Growth and Gene Expression: Origins and Consequences. Science
**2010**, 330, 1099–1102. [Google Scholar] [CrossRef] [PubMed] - Ceroni, F.; Algar, R.; Stan, G.B.; Ellis, T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat. Methods
**2015**, 12, 415–418. [Google Scholar] [CrossRef] [PubMed][Green Version] - Gyorgy, A.; Jiménez, J.I.; Yazbek, J.; Huang, H.H.; Chung, H.; Weiss, R.; Del Vecchio, D. Isocost Lines Describe the Cellular Economy of Genetic Circuits. Biophys. J.
**2015**, 109, 639–646. [Google Scholar] [CrossRef][Green Version] - Siegal-Gaskins, D.; Tuza, Z.A.; Kim, J.; Noireaux, V.; Murray, R.M. Gene Circuit Performance Characterization and Resource Usage in a Cell-Free “Breadboard”. ACS Synth. Biol.
**2014**, 3, 416–425. [Google Scholar] [CrossRef] [PubMed][Green Version] - Borkowski, O.; Ceroni, F.; Stan, G.; Ellis, T. Overloaded and stressed: Whole-cell considerations for bacterial synthetic biology. Curr. Opin. Microbiol.
**2016**, 33, 123–130. [Google Scholar] [CrossRef] [PubMed] - Weiße, A.Y.; Oyarzún, D.A.; Danos, V.; Swain, P.S. Mechanistic links between cellular trade-offs, gene expression, and growth. Proc. Natl. Acad. Sci. USA
**2015**, 112, E1038–E1047. [Google Scholar] [CrossRef][Green Version] - Raveh, A.; Margaliot, M.; Sontag, E.D.; Tuller, T. A model for competition for ribosomes in the cell. J. R. Soc. Interface
**2016**, 13, 20151062. [Google Scholar] [CrossRef] - Gorochowski, T.E.; Avcilar-Kucukgoze, I.; Bovenberg, R.A.L.; Roubos, J.A.; Ignatova, Z. A Minimal Model of Ribosome Allocation Dynamics Captures Trade-offs in Expression between Endogenous and Synthetic Genes. ACS Synth. Biol.
**2016**, 5, 710–720. [Google Scholar] [CrossRef] [PubMed][Green Version] - Frei, T.; Cella, F.; Tedeschi, F.; Gutiérrez, J.; Stan, G.B.; Khammash, M.; Siciliano, V. Characterization and mitigation of gene expression burden in mammalian cells. Nat. Commun.
**2020**, 11, 4641. [Google Scholar] [CrossRef] - Tan, C.; Marguet, P.; You, L. Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol.
**2009**, 5, 842–848. [Google Scholar] [CrossRef] - Marguet, P.; Tanouchi, Y.; Spitz, E.; Smith, C.; You, L. Oscillations by Minimal Bacterial Suicide Circuits Reveal Hidden Facets of Host-Circuit Physiology. PLoS ONE
**2010**, 5, e11909. [Google Scholar] [CrossRef][Green Version] - Vecchio, D.D.; Qian, Y.; Murray, R.M.; Sontag, E.D. Future systems and control research in synthetic biology. Annu. Rev. Control
**2018**, 45, 5–17. [Google Scholar] [CrossRef] - Andrianantoandro, E.; Basu, S.; Karig, D.K.; Weiss, R. Synthetic biology: New engineering rules for an emerging discipline. Mol. Syst. Biol.
**2006**, 2, 5–17. [Google Scholar] [CrossRef][Green Version] - Bandiera, L.; Hou, Z.; Kothamachu, V.B.; Balsa-Canto, E.; Swain, P.S.; Menolascina, F. On-Line Optimal Input Design Increases the Efficiency and Accuracy of the Modelling of an Inducible Synthetic Promoter. Processes
**2018**, 6, 148. [Google Scholar] [CrossRef][Green Version] - Sakurai, Y.; Hori, Y. Optimization-based synthesis of stochastic biocircuits with statistical specifications. J. R. Soc. Interface
**2018**, 15, 20170709. [Google Scholar] [CrossRef] [PubMed][Green Version] - Bokes, P.; Hojcka, M.; Singh, A. MicroRNA based feedforward control of intrinsic gene expression noise. IEEE/ACM Trans. Comput. Biol. Bioinform.
**2019**, 18, 272–282. [Google Scholar] [CrossRef] [PubMed] - Gorochowski, T.E.; Grierson, C.S.; di Bernardo, M. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks. Sci. Adv.
**2018**, 4, eaap9751. [Google Scholar] [CrossRef] [PubMed][Green Version] - Cuba Samaniego, C.; Giordano, G.; Kim, J.; Blanchini, F.; Franco, E. Molecular Titration Promotes Oscillations and Bistability in Minimal Network Models with Monomeric Regulators. ACS Synth. Biol.
**2016**, 5, 321–333. [Google Scholar] [CrossRef] [PubMed] - Siegal-Gaskins, D.; Franco, E.; Zhou, T.; Murray, R.M. An analytical approach to bistable biological circuit discrimination using real algebraic geometry. J. R. Soc. Interface
**2015**, 12, 20150288. [Google Scholar] [CrossRef][Green Version] - Giordano, G.; Cuba Samaniego, C.; Franco, E.; Blanchini, F. Computing the structural influence matrix for biological systems. J. Math. Biol.
**2016**, 72, 1927–1958. [Google Scholar] [CrossRef] [PubMed] - Blanchini, F.; Franco, E.; Giordano, G. A Structural Classification of Candidate Oscillatory and Multistationary Biochemical Systems. Bull. Math. Biol.
**2014**, 76, 2542–2569. [Google Scholar] [CrossRef] - Franco, E.; Giordano, G.; Forsberg, P.O.; Murray, R.M. Negative Autoregulation Matches Production and Demand in Synthetic Transcriptional Networks. ACS Synth. Biol.
**2014**, 3, 589–599. [Google Scholar] [CrossRef] [PubMed][Green Version] - Prescott, T.P.; Lang, M.; Papachristodoulou, A. Quantification of Interactions between Dynamic Cellular Network Functionalities by Cascaded Layering. PLoS Comput. Biol.
**2015**, 11, e1004235. [Google Scholar] [CrossRef] - Purcell, O.; di Bernardo, M.; Grierson, C.S.; Savery, N.J. A Multi-Functional Synthetic Gene Network: A Frequency Multiplier, Oscillator and Switch. PLoS ONE
**2011**, 6, e16140. [Google Scholar] [CrossRef] - Cuba Samaniego, C.; Franco, E. A Robust Molecular Network Motif for Period-Doubling Devices. ACS Synth. Biol.
**2018**, 7, 75–85. [Google Scholar] [CrossRef] - Ren, X.; Samaniego, C.C.; Murray, R.M.; Franco, E. Bistable State Switch Enables Ultrasensitive Feedback Control in Heterogeneous Microbial Populations. In Proceedings of the 2021 American Control Conference, New Orleans, LA, USA, 26–28 May 2021; pp. 652–659. [Google Scholar] [CrossRef]
- Egbert, R.G.; Klavins, E. Fine-tuning gene networks using simple sequence repeats. Proc. Natl. Acad. Sci. USA
**2012**, 109, 16817–16822. [Google Scholar] [CrossRef][Green Version] - Zhang, R.; Goetz, H.; Melendez-Alvarez, J.; Li, J.; Ding, T.; Wang, X.; Tian, X.J. Winner-takes-all resource competition redirects cascading cell fate transitions. Nat. Commun.
**2021**, 12, 853. [Google Scholar] [CrossRef] [PubMed] - Elowitz, M.B.; Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature
**2000**, 403, 335–338. [Google Scholar] [CrossRef] - Higham, D.J. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations. SIAM Rev.
**2001**, 43, 525–546. [Google Scholar] [CrossRef] - Ando, T.; Meguro, T.; Yamato, I. Multiple Time Step Brownian Dynamics for Long Time Simulation of Biomolecules. Mol. Simul.
**2003**, 29, 471–478. [Google Scholar] [CrossRef] - Copperman, J.; Guenza, M.G. Coarse-Grained Langevin Equation for Protein Dynamics: Global Anisotropy and a Mode Approach to Local Complexity. J. Phys. Chem. B
**2015**, 119, 9195–9211. [Google Scholar] [CrossRef] - Gyorgy, A. Sharing Resources Can Lead to Monostability in a Network of Bistable Toggle Switches. IEEE Control Syst. Lett.
**2018**, 3, 308–313. [Google Scholar] [CrossRef] - Yong, C.; Gyorgy, A. Stability and Robustness of Unbalanced Genetic Toggle Switches in the Presence of Scarce Resources. Life
**2021**, 11, 271. [Google Scholar] [CrossRef] [PubMed] - Leon, M.; Woods, M.L.; Fedorec, A.J.H.; Barnes, C.P. A computational method for the investigation of multistable systems and its application to genetic switches. BMC Syst. Biol.
**2016**, 10, 130. [Google Scholar] [CrossRef][Green Version] - Elowitz, M.B.; Levine, A.J.; Siggia, E.D.; Swain, P.S. Stochastic Gene Expression in a Single Cell. Science
**2002**, 297, 1183–1186. [Google Scholar] [CrossRef][Green Version] - Gyorgy, A.; Murray, R.M. Quantifying resource competition and its effects in the TX-TL system. In Proceedings of the 55th IEEE Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 3363–3368. [Google Scholar] [CrossRef][Green Version]
- Salis, H.M. Chapter two—The Ribosome Binding Site Calculator. In Synthetic Biology, Part B; Voigt, C., Ed.; Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2011; Volume 498, pp. 19–42. [Google Scholar] [CrossRef]
- Lee, J.W.; Gyorgy, A.; Cameron, D.E.; Pyenson, N.; Choi, K.R.; Way, J.C.; Silver, P.A.; Del Vecchio, D.; Collins, J.J. Creating Single-Copy Genetic Circuits. Mol. Cell
**2016**, 63, 329–336. [Google Scholar] [CrossRef][Green Version] - Wang, T.; Tague, N.; Whelan, S.; Dunlop, M.J. Programmable gene regulation for metabolic engineering using decoy transcription factor binding sites. Nucleic Acid Res.
**2020**, 49, 1163–1172. [Google Scholar] [CrossRef] - Gardner, T.S.; Cantor, C.R.; Collins, J.J. Construction of a genetic toggle switch in E. coli. Nature
**2000**, 403, 339–342. [Google Scholar] [CrossRef] [PubMed] - Jaruszewicz-Błońska, J.; Lipniacki, T. Genetic toggle switch controlled by bacterial growth rate. BMC Syst. Biol.
**2017**, 11, 117. [Google Scholar] [CrossRef][Green Version] - Pokhilko, A.; Ebenhöh, O.; Stark, W.M.; Colloms, S.D. Mathematical model of a serine integrase-controlled toggle switch with a single input. J. R. Soc. Interface
**2018**, 15, 20180160. [Google Scholar] [CrossRef] - Lugagne, J.B.; Carrillo, S.S.; Kirch, M.; Köhler, A.; Batt, G.; Hersen, P. Balancing a genetic toggle switch by real-time feedback control and periodic forcing. Nat. Commun.
**2017**, 8, 1671. [Google Scholar] [CrossRef] [PubMed] - Guarino, A.; Fiore, D.; Salzano, D.; di Bernardo, M. Balancing Cell Populations Endowed with a Synthetic Toggle Switch via Adaptive Pulsatile Feedback Control. ACS Synth. Biol.
**2020**, 9, 793–803. [Google Scholar] [CrossRef] - Du, P.; Zhao, H.; Zhang, H.; Wang, R.; Huang, J.; Tian, Y.; Luo, X.; Luo, X.; Wang, M.; Xiang, Y.; et al. De novo design of an intercellular signaling toolbox for multi-channel cell–cell communication and biological computation. Nat. Commun.
**2020**, 11, 1–11. [Google Scholar] [CrossRef] - Gyorgy, A. Bistability requires better balanced toggle switches in the presence of competition for shared cellular resources. In Proceedings of the American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 154–156. [Google Scholar]
- Shao, B.; Rammohan, J.; Anderson, D.A.; Alperovich, N.; Ross, D.; Voigt, C.A. Single-cell measurement of plasmid copy number and promoter activity. Nat. Commun.
**2021**, 12, 1475. [Google Scholar] [CrossRef] - Darlington, A.P.S.; Kim, J.; Jimenez, J.I.; Bates, D.G. Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes. Nat. Commun.
**2018**, 9, 695. [Google Scholar] [CrossRef][Green Version] - Gómez-Schiavon, M.; Dods, G.; El-Samad, H.; Ng, A.H. Multidimensional Characterization of Parts Enhances Modeling Accuracy in Genetic Circuits. ACS Synth. Biol.
**2020**, 9, 2917–2926. [Google Scholar] [CrossRef] [PubMed] - Vecchio, D.D.; Murray, R.M. Biomolecular Feedback Systems; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Bhattacharya, S.; Zhang, Q.; Andersen, M.E. A deterministic map of Waddington’s epigenetic landscape for cell fate specification. BMC Syst. Biol.
**2011**, 5, 85. [Google Scholar] [CrossRef] [PubMed][Green Version] - Verd, B.; Crombach, A.; Jaeger, J. Classification of transient behaviours in a time-dependent toggle switch model. BMC Syst. Biol.
**2014**, 8, 43. [Google Scholar] [CrossRef] [PubMed][Green Version] - Gyorgy, A. Scarcity of Cellular Resources Decreases the Robustness of Toggle Switches to Noise. In Proceedings of the American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020. [Google Scholar]
- So/rensen, M.R.; Voter, A.F. Temperature-accelerated dynamics for simulation of infrequent events. J. Chem. Phys.
**2000**, 112, 9599–9606. [Google Scholar] [CrossRef][Green Version] - Geary, R.C. The Frequency Distribution of the Quotient of Two Normal Variates. J. R. Stat. Soc.
**1930**, 93, 442–446. [Google Scholar] [CrossRef] - Marsaglia, G. Ratios of Normal Variables and Ratios of Sums of Uniform Variables. J. Am. Stat. Assoc.
**1965**, 60, 193–204. [Google Scholar] [CrossRef] - Hinkley, D.V. On the Ratio of Two Correlated Normal Random Variables. Biometrika
**1969**, 56, 635–639. [Google Scholar] [CrossRef] - Marsaglia, G. Ratios of Normal Variables. J. Stat. Softw.
**2006**, 16, 1–10. [Google Scholar] [CrossRef] - Gyorgy, A. How Cell-to-Cell Heterogeneity and Scarce Resources Shape the Population-Level Stability Profile of Toggle Switches. In Proceedings of the 58th IEEE Conference on Decision and Control (CDC), Nice, France, 11–13 December 2019. [Google Scholar]
- Andrews, L.B.; Nielsen, A.A.K.; Voigt, C.A. Cellular checkpoint control using programmable sequential logic. Science
**2018**, 361, eaap8987. [Google Scholar] [CrossRef] [PubMed][Green Version] - Rotoli, M.; Russo, G.; di Bernardo, M. Stabilizing Quorum-Sensing Networks via Noise. IEEE Trans. Circuits Syst. II Express Briefs
**2018**, 65, 647–651. [Google Scholar] [CrossRef] - Russo, G.; Wirth, F.; Shorten, R. On Synchronization in Continuous-Time Networks of Nonlinear Nodes with State-Dependent and Degenerate Noise Diffusion. IEEE Trans. Autom. Control
**2019**, 64, 389–395. [Google Scholar] [CrossRef] - Lynch, M.; Marinov, G.K. The bioenergetic costs of a gene. Proc. Natl. Acad. Sci. USA
**2015**, 112, 15690–15695. [Google Scholar] [CrossRef] [PubMed][Green Version] - Gorochowski, T.E.; Chelysheva, I.; Eriksen, M.; Nair, P.; Pedersen, S.; Ignatova, Z. Absolute quantification of translational regulation and burden using combined sequencing approaches. Mol. Syst. Biol.
**2019**, 15. [Google Scholar] [CrossRef] - Espah Borujeni, A.; Zhang, J.; Doosthosseini, H.; Nielsen, A.A.K.; Voigt, C.A. Genetic circuit characterization by inferring RNA polymerase movement and ribosome usage. Nat. Commun.
**2020**, 11, 5001. [Google Scholar] [CrossRef] [PubMed] - Greco, F.V.; Pandi, A.; Erb, T.J.; Grierson, C.S.; Gorochowski, T.E. Harnessing the central dogma for stringent multi-level control of gene expression. Nat. Commun.
**2021**, 12, 1738. [Google Scholar] [CrossRef] [PubMed] - Bandiera, L.; Gomez-Cabeza, D.; Gilman, J.; Balsa-Canto, E.; Menolascina, F. Optimally Designed Model Selection for Synthetic Biology. ACS Synth. Biol.
**2020**, 9, 3134–3144. [Google Scholar] [CrossRef] [PubMed] - Liu, C.C.; Jewett, M.C.; Chin, J.W.; Voigt, C.A. Toward an orthogonal central dogma. Nat. Chem. Biol.
**2018**, 14, 103–106. [Google Scholar] [CrossRef] - Aleksashin, N.A.; Szal, T.; d’Aquino, A.E.; Jewett, M.C.; Vázquez-Laslop, N.; Mankin, A.S. A fully orthogonal system for protein synthesis in bacterial cells. Nat. Commun.
**2020**, 11, 1858. [Google Scholar] [CrossRef][Green Version] - Ceroni, F.; Boo, A.; Furini, S.; Gorochowski, T.E.; Borkowski, O.; Ladak, Y.N.; Awan, A.R.; Gilbert, C.; Stan, G.B.; Ellis, T. Burden-driven feedback control of gene expression. Nat. Methods
**2018**, 15, 387–393. [Google Scholar] [CrossRef] [PubMed][Green Version] - Huang, H.H.; Qian, Y.; Del Vecchio, D. A quasi-integral controller for adaptation of genetic modules to variable ribosome demand. Nat. Commun.
**2018**, 9, 5415. [Google Scholar] [CrossRef][Green Version] - Jones, R.D.; Qian, Y.; Siciliano, V.; DiAndreth, B.; Huh, J.; Weiss, R.; Del Vecchio, D. An endoribonuclease-based feedforward controller for decoupling resource-limited genetic modules in mammalian cells. Nat. Commun.
**2020**, 11, 5690. [Google Scholar] [CrossRef] - Ali Al-Radhawi, M.; Tran, A.P.; Ernst, E.A.; Chen, T.; Voigt, C.A.; Sontag, E.D. Distributed implementation of Boolean functions by transcriptional synthetic circuits. ACS Synth. Biol.
**2020**, 9, 2172–2187. [Google Scholar] [CrossRef] - Cookson, N.A.; Mather, W.H.; Danino, T.; Mondragón-Palomino, O.; Williams, R.J.; Tsimring, L.S.; Hasty, J. Queueing up for enzymatic processing: Correlated signaling through coupled degradation. Mol. Syst. Biol.
**2011**, 7, 561. [Google Scholar] [CrossRef][Green Version] - Butzin, N.C.; Hochendoner, P.; Ogle, C.T.; Mather, W.H. Entrainment of a Bacterial Synthetic Gene Oscillator through Proteolytic Queueing. ACS Synth. Biol.
**2017**, 6, 455–462. [Google Scholar] [CrossRef] - Butzin, N.C.; Mather, W.H. Crosstalk between Diverse Synthetic Protein Degradation Tags in Escherichia coli. ACS Synth. Biol.
**2018**, 7, 54–62. [Google Scholar] [CrossRef] - Deter, H.S.; Abualrahi, A.H.; Jadhav, P.; Schweer, E.K.; Ogle, C.T.; Butzin, N.C. Proteolytic Queues at ClpXP Increase Antibiotic Tolerance. ACS Synth. Biol.
**2020**, 9, 95–103. [Google Scholar] [CrossRef] - Nikolados, E.M.; Weiße, A.Y.; Ceroni, F.; Oyarzún, D.A. Growth Defects and Loss-of-Function in Synthetic Gene Circuits. ACS Synth. Biol.
**2019**, 8, 1231–1240. [Google Scholar] [CrossRef][Green Version] - Dong, H.; Nilsson, L.; Kurland, C.G. Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J. Bacteriol.
**1995**, 177, 1497–1504. [Google Scholar] [CrossRef] [PubMed][Green Version] - Stoebel, D.M.; Dean, A.M.; Dykhuizen, D.E. The Cost of Expression of Escherichia coli lac Operon Proteins Is in the Process, Not in the Products. Genetics
**2008**, 178, 1653–1660. [Google Scholar] [CrossRef] [PubMed][Green Version] - Carrera, J.; Rodrigo, G.; Singh, V.; Kirov, B.; Jaramillo, A. Empirical model and in vivo characterization of the bacterial response to synthetic gene expression show that ribosome allocation limits growth rate. Biotechnol. J.
**2011**, 6, 773–783. [Google Scholar] [CrossRef] - Klumpp, S.; Hwa, T. Bacterial growth: Global effects on gene expression, growth feedback and proteome partition. Curr. Opin. Biotechnol.
**2014**, 28, 96–102. [Google Scholar] [CrossRef] [PubMed][Green Version] - Shachrai, I.; Zaslaver, A.; Alon, U.; Dekel, E. Cost of Unneeded Proteins in E. coli Is Reduced after Several Generations in Exponential Growth. Mol. Cell
**2010**, 38, 758–767. [Google Scholar] [CrossRef] - Liao, C.; Blanchard, A.E.; Lu, T. An integrative circuit–host modelling framework for predicting synthetic gene network behaviours. Nat. Microbiol.
**2017**, 2, 1658–1666. [Google Scholar] [CrossRef] [PubMed] - Sickle, J.J.; Ni, C.; Shen, D.; Wang, Z.; Jin, M.; Lu, T. Integrative Circuit-Host Modeling of a Genetic Switch in Varying Environments. Sci. Rep.
**2020**, 10, 8383. [Google Scholar] [CrossRef] [PubMed] - Nielsen, A.A.K.; Der, B.S.; Shin, J.; Vaidyanathan, P.; Paralanov, V.; Strychalski, E.A.; Ross, D.; Densmore, D.; Voigt, C.A. Genetic circuit design automation. Science
**2016**, 352, aac7341. [Google Scholar] [CrossRef] [PubMed][Green Version]

**Figure 1.**Stability and robustness of genetic switches depend on their context [40,41]. (

**A**) In the absence of loading from its context, trajectories of toggle switch #1 converge to one of two metastable states (red and green). Once loading from the context is present, realized via the addition of the repressilator [42], the two distinct subpopulations coalesce (purple). (

**B**) Although toggle switch #2 behaves identically to toggle switch #1 in the absence of the context (red and green), the same perturbation only causes a slight shift of the two subpopulations towards each other (purple). (

**C**) Toggle switch #2 displays dramatically reduced robustness to noise due to its context. For more details on the stochastic simulations [43,44,45], see Section S1 and Section S6 in the SI.

**Figure 2.**Resource competition and promoter leakiness both act against bistability. (

**A**) In the absence of promoter leakiness, the toggle switch is bistable if $q=2(1+\beta )/\alpha <1$, and monostable if otherwise (SI Section S2.2). (

**B**) In the absence of competition for shared cellular resources, the dynamics are bistable if $(\alpha ,\nu )$ lies below the curve $({\alpha}_{w}\left(w\right),{\nu}_{w}\left(w\right))$, where ${\alpha}_{w}\left(w\right)={(1+{w}^{2})}^{2}/\left(2w\right)$ and ${\nu}_{w}\left(w\right)=({w}^{2}-1)/{(1+{w}^{2})}^{2}$, parameterized by $w\ge 1$ (SI Section S2.3).

**Figure 3.**In the presence of promoter leakiness and resource competition, the constraints ${q}_{i}\left(\nu \right)=1$ from (3) partition the parameter space into monostable, bistable, and tristable regions (red, green, and purple, respectively). See SI Section S6 for simulation parameters.

**Figure 4.**Robustness to noise is characterized using a potential landscape-based approach. (

**A**) Trajectories flow downhill along the potential surface (grey) towards one of the metastable fixed points (red and green) depending on the initial conditions. (

**B**) The potential barrier in the bistable case can be approximated by $h\approx {\psi}_{1}{({q}^{-1}-1)}^{{\psi}_{2}}$ with $({\psi}_{1},{\psi}_{2})=(0.545,2.039)$, and 95% confidence intervals $(0.544,0.547)$ and $(2.035,2.042)$, respectively [67]. (

**C**) This approximation (solid line) is well aligned with the data obtained from the numerical calculations of the potential barrier (circles). (

**D**) The height of the potential barrier separating the two metastable fixed points in case of bistable dynamics for different values of $\alpha $ (normalized to the maximal value, represented as 100%), together with the mean transition time between these metastable fixed points (normalized to the maximal value, represented as 100%) in case of different noise power. See SI Section S6 for the simulation parameters.

**Figure 5.**Population-level properties of the toggle switch are governed by the distribution of the random variable Q from (6) in the absence of promoter leakiness. (

**A**) The distribution of Q shifts right as ${\mu}_{\beta}$ increases, pushing the population towards unimodality [73]. (

**B**) Greater correlation $\rho $ between $\alpha $ and $\beta $ yields increased population-level uniformity. See SI Section S6 for the simulation parameters.

**Figure 6.**In the presence of promoter leakiness, population-level properties depend on the random variables ${Q}_{i}$ from (6). (

**A**) Increasing leakiness decreases the bistable fraction of the population. (

**B**) Unwanted trimodality can be eliminated, for instance, by increasing resource usage of the toggle switch for green/purple, and by decreasing it for red (Figure S9 in the SI). (

**C**) Increasing the expected value ${\mu}_{\beta}$ of $\beta $ first increases both the bistable fraction of the population (displayed in percentages) and the robustness of the metastable states to noise (measured via the potential barrier separating them), then this effect reverses as further increasing ${\mu}_{\beta}$ pushes the population away from the optimal region. See SI Section S6 for the simulation parameters.

**Figure 7.**Loading from the context affects the stability and robustness properties of genetic switches. (

**A**) Increasing ${\beta}_{c}$ causes a shift in the $(\alpha ,\beta )$ plane towards the origin according to $\alpha \leftarrow \alpha /(1+{\beta}_{c})$ and $\beta \leftarrow \beta /(1+{\beta}_{c})$. Distributions show $y-z$ in the steady state (for more details, see Figures S10 and S11 in the SI). (

**B**) Higher $\beta $ protects against loss of robustness to noise due to loading from the context (the parameters are chosen so that q is the same in all cases when ${\beta}_{c}=0$, yielding identical potential barriers). Solid lines correspond to predictions considering the approximation $h\approx {\psi}_{1}{({q}^{-1}-1)}^{{\psi}_{2}}$ of the potential barrier with $({\psi}_{1},{\psi}_{2})=(0.545,2.039)$, whereas circles represent simulation data using the potential landscape directly. See SI Section S6 for the simulation parameters.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gyorgy, A.
Context-Dependent Stability and Robustness of Genetic Toggle Switches with Leaky Promoters. *Life* **2021**, *11*, 1150.
https://doi.org/10.3390/life11111150

**AMA Style**

Gyorgy A.
Context-Dependent Stability and Robustness of Genetic Toggle Switches with Leaky Promoters. *Life*. 2021; 11(11):1150.
https://doi.org/10.3390/life11111150

**Chicago/Turabian Style**

Gyorgy, Andras.
2021. "Context-Dependent Stability and Robustness of Genetic Toggle Switches with Leaky Promoters" *Life* 11, no. 11: 1150.
https://doi.org/10.3390/life11111150