A Bidirectional Long Short-Term Memory Model Algorithm for Predicting COVID-19 in Gulf Countries
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Dataset Description
3.2. Normalization
3.3. Bidirectional Long Short-Term Memory Algorithm (Bi-LSTM)
3.4. Model Evaluation Criteria
4. Results
Validation of the Proposed Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rismanbaf, A. Potential Treatments for COVID-19; A Narrative Literature Review. Arch. Acad. Emerg. Med. 2020, 8, e29. Available online: https://twitter.com/WHOWPRO/status/1219478547644813312?s=20 (accessed on 27 March 2020).
- Coronavirus Disease (COVID-19) Pandemic. 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 29 March 2020).
- Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health 2020, 25, 278–280. [Google Scholar] [CrossRef] [Green Version]
- Letko, M.; Marzi, A.; Munster, V. Functional Assessment of Cell Entry and Receptor Usage for SARS-CoV-2 and Other Lineage B Betacoronaviruses. Nat. Microbiol. 2020, 5, 562–569. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report–29; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Elsevier. Novel Coronavirus Information Center. 2020. Available online: https://www.elsevier.com/connect/coronavirus-information-center (accessed on 10 April 2020).
- World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19); World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Hui, D.S.; Azhar, E.I.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C.; et al. The Continuing 2019-Ncov Epidemic Threat of Novel Coronaviruses to Global Health the Latest 2019 Novel Coronavirus Outbreak in Wuhan, China. Int. J. Infect. Dis. 2020, 91, 264–266. [Google Scholar] [CrossRef] [Green Version]
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef]
- Ivanov, D. Predicting the Impacts of Epidemic Outbreaks on Global Supply Chains: A Simulation-Based Analysis on the Coronavirus Outbreak (COVID-19/SARS-CoV-2) Case. Transp. Res. Part E Logist. Transp. Rev. 2020, 136, 101922. [Google Scholar] [CrossRef] [PubMed]
- Koolhof, I.S.; Gibney, K.B.; Bettiol, S.; Charleston, M.; Wiethoelter, A.; Arnold, A.L.; Campbell, P.T.; Neville, P.J.; Aung, P.; Shiga, T.; et al. The Forecasting of Dynamical Ross River Virus Outbreaks: Victoria, Australia. Epidemics 2020, 30, 100377. [Google Scholar] [CrossRef] [PubMed]
- Darwish, A.; Rahhal, Y.; Jafar, A. A Comparative Study on Predicting Influenza Outbreaks Using Different Feature Spaces: Application of Influenza-Like Illness Data from Early Warning Alert and Response System in Syria. BMC Res. Notes 2020, 13, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rypdal, M.; Sugihara, G. Inter-Outbreak Stability Reflects the Size of the Susceptible Pool and Forecasts Magnitudes of Seasonal Epidemics. Nat. Commun. 2019, 10, 2374. [Google Scholar] [CrossRef] [Green Version]
- Scarpino, S.V.; Petri, G. On the Predictability of Infectious Disease Outbreaks. Nat. Commun. 2019, 10, 08616. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Z.; Dong, W.; Lu, Y.; Yang, P.; Wang, Q.; Jia, P. Real-Time Forecasting of Hand-Foot-and-Mouth Disease Outbreaks Using the Integrating Compartment Model and Assimilation Filtering. Sci. Rep. 2019, 9, 2661. [Google Scholar] [CrossRef]
- Lixiang, L.; Yang, Z.; Dang, Z.; Meng, C.; Huang, J.; Meng, H.; Wang, D.; Chen, G.; Zhang, J.; Peng, H.; et al. Propagation analysis and prediction of the COVID-19. Infect. Dis. Model. 2020, 5, 282–292. [Google Scholar]
- Ciufolini, I.; Paolozzi, A. Mathematical Prediction of the Time Evolution of the COVID-19 Pandemic in Italy by a Gauss Error Function and Monte Carlo Simulations. Eur. Phys. J. Plus 2020, 135, 355. [Google Scholar] [CrossRef] [PubMed]
- Pham, H. On Estimating the Number of Deaths Related to Covid-19. Mathematics 2020, 8, 655. [Google Scholar] [CrossRef]
- Cakir, Z.; Savas, H.B. A Mathematical Modelling Approach in the Spread of the Novel 2019 Coronavirus SARS-CoV-2 (COVID-19) Pandemic. Electr. J. Gen. Med. 2020, 17, em205. [Google Scholar] [CrossRef] [Green Version]
- Alimadadi, A.; Aryal, S.; Manandhar, I.; Munroe, P.B.; Joe, B.; Cheng, X. Artificial Intelligence and Machine Learning to Fight COVID-19. Physiol. Genom. 2020, 52, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Tarnok, A. Machine Learning, COVID-19 (2019-nCoV), and Multi-OMICS. Cytom. A 2020, 97, 215–216. [Google Scholar] [CrossRef]
- Wynants, L.; Van Calster, B.; Bonten, M.M.J.; Collins, G.S.; Debray, T.P.A.; De Vos, M.; Haller, M.C.; Heinze, G.; Moons, K.G.M.; Riley, R.D.; et al. Prediction Models for Diagnosis and Prognosis of Covid-19 Infection: Systematic Review and Critical Appraisal. Brit. Medic. J. 2020, 369, m1328. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Kumar, V.; Kaur, M. Classification of COVID-19 Patients from Chest CT Images Using Multi-Objective Differential Evolution-Based Convolutional Neural Networks. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1379–1389. [Google Scholar] [CrossRef]
- Naude, W. Artificial intelligence vs COVID-19: Limitations, Constraints and Pitfalls. AI Soc. 2020, 35, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Seo, Y.B.; Jung, E. Prediction of COVID-19 Transmission Dynamics Using a Mathematical Model Considering Behavior Changes in Korea. Epidem. Health 2020, 42, e2020026. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.F.; Chen, Y.Q. On a Statistical Transmission Model in Analysis of the Early Phase of COVID-19 Outbreak. Statist. Biosci. 2020, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.H.; Gong, Y.; Tian, X.D.; Cao, Y.; Liu, W.J.; Li, J. The Rapid Assessment and Early Warning Models for COVID-19. Virol. Sin. 2020, 35, 272–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfram, C. An Agent-Based Model of Covid-19. Complex Syst. 2020, 29, 87–105. [Google Scholar] [CrossRef]
- National Center for Immunization and Respiratory Diseases (NCIRD). Covid-19 Forecasts. 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html (accessed on 10 April 2020).
- Sperrin, M.; Grant, S.W.; Peek, N. Prediction Models for Diagnosis and Prognosis in Covid-19. Brit. Medic. J. 2020, 369, m1464. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Han, X.; Zheng, C. Evolution of CT Manifestations in a Patient Recovered from 2019 Novel Coronavirus (2019-Ncov) Pneumonia in Wuhan, China. Radiology 2020, 295, 20. [Google Scholar] [CrossRef]
- Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the Novel Coronavirus from the Ongoing Wuhan Outbreak and Modeling of Its Spike Protein for Risk of Human Transmission. Sci. China Life Sci. 2020, 63, 457–460. [Google Scholar] [CrossRef] [Green Version]
- Lau, S.K.; Lee, P.; Tsang, A.K.; Yip, C.C.; Tse, H.; Lee, R.A.; So, L.Y.; Lau, Y.L.; Chan, K.H.; Woo, P.C.; et al. Molecular Epidemiology of Human Coronavirus OC43 Reveals Evolution of Di_Erent Genotypes over Time and Recent Emergence of a Novel Genotype Due to Natural Recombination. J. Virol. 2011, 85, 11325–11337. [Google Scholar] [CrossRef] [Green Version]
- Seo, D.W.; Shin, S.Y. Methods Using Social Media and Search Queries to Predict Infectious Disease Outbreaks. Healthc. Inform. Res. 2017, 23, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Meyers, L.A.; Pourbohloul, B.; Newman, M.E.; Skowronski, D.M.; Brunham, R.C. Network Theory and SARS: Predicting Outbreak Diversity. J. Theory Biol. 2005, 232, 71–81. [Google Scholar] [CrossRef]
- Alessa, A.; Faezipour, M. A Review of Influenza Detection and Prediction Through Social Networking Sites. Theor. Biol. Med. Model. 2018, 15, 2. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Guo, S.; Zou, M.; Chen, C.; Deng, F.; Xie, Z.; Hu, S.; Wu, L. A Dengue Fever Predicting Model Based on Baidu Search Index Data and Climate Data in South China. PLoS ONE 2019, 14, e0226841. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Seo, D.; An, J.; Kwak, H.; Kim, S.; Gwack, J.; Jo, M. High Correlation of Middle East Respiratory Syndrome Spread with Google Search and Twitter Trends in Korea. Sci. Rep. 2016, 6, 32920. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Gel, Y.R.; Ramirez Ramirez, L.L.; Nezafati, K.; Zhang, Q.; Tsui, K.L. Forecasting Influenza in Hong Kong with Google Search Queries and Statistical Model Fusion. PLoS ONE 2017, 12, e0176690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, F.; Hu, Z.; Zhang, W.; Cai, L.; Cai, G.; Aoyagi, K. Construction and Evaluation of Two Computational Models for Predicting the Incidence of Influenza in Nagasaki Prefecture, Japan. Sci. Rep. 2017, 7, 7192. [Google Scholar] [CrossRef] [PubMed]
- Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep Learning Applications and Challenges in Big Data Analytics. J. Big Data 2017, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Janowczyk, A.; Madabhushi, A. Deep Learning for Digital Pathology Image Analysis: A Comprehensive Tutorial with Selected Use Cases. J. Pathol. Inform. 2016, 7, 29. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature 2017, 542, 115. [Google Scholar] [CrossRef]
- Bychkov, D.; Linder, N.; Turkki, R.; Nordling, S.; Kovanen, P.E.; Verrill, C.; Walliander, M.; Lundin, M.; Haglund, C.; Lundin, J. Deep Learning Based Tissue Analysis Predicts Outcome in Colorectal Cancer. Sci. Rep. 2018, 8, 3395. [Google Scholar] [CrossRef]
- Aldhyani, T.H.; Alshebami, A.S.A.; Alzahrani, M.Y. Soft Computing Model to Predict Chronic Diseases. J. Inf. Sci. Eng. 2020, 36, 365–376. [Google Scholar]
- Aldhyani, T.H.; Alshebami, A.S.; Alzahrani, M.Y. Soft Clustering for Enhancing the Diagnosis of Chronic Diseases over Machine Learning Algorithms. J. Healthc. Eng. 2020, 2020, 4984967. [Google Scholar] [CrossRef] [PubMed]
- Balcan, D.; Colizza, V.; Goncalves, B.; Hu, H.; Ramasco, J.; Vespignani, A. Multiscale Mobility Networks And The Spatial Spreading Of Infectious Diseases. Proc. Natl. Acad. Sci. USA 2009, 106, 21484–21489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Q.; Nsoesie, E.; Lv, B.; Peng, G.; Chunara, R.; Brownstein, J. Monitoring Influenza Epidemics in China with Search Query from Baidu. PLoS ONE 2013, 8, e64323. [Google Scholar] [CrossRef]
- Milinovich, G.J.; Avril, S.M.; Clements, A.C.; Brownstein, J.S.; Tong, S.; Hu, W. Using Internet Search Queries for Infectious Disease Surveillance: Screening Diseases for Suitability. BMC Infect. Dis. 2014, 14, 690. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.; Conrad, C.; Fowlkes, A.; Mohebbi, M. Assessing Google Flu Trends Performance in the United States during the 2009 Influenza Virus A (H1N1) Pandemic. PLoS ONE 2011, 6, e23610. [Google Scholar] [CrossRef]
- Zain, Z.M.; Alturki, N.M. COVID-19 Pandemic Forecasting Using CNN-LSTM: A Hybrid Approach. J. Control. Sci. Eng. 2021, 2021, 8785636. [Google Scholar] [CrossRef]
- Vynnycky, E.; White, R. An Introduction to Infectious Disease Modelling; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Aldhyani, T.H.; Alrasheed, M.; Alzahrani, M.Y.; Ahmed, H. Deep Learning and Holt-Trend Algorithms for Predicting COVID-19 Pandemic. medRxiv 2020. [Google Scholar] [CrossRef]
- Lawson, A.B. Statistical Methods in Spatial Epidemiology; John Wiley & Sons: Hoboken, NJ, USA, 2016; Volume 1, pp. 1–424. [Google Scholar]
- Alotaibi, A.; Shiblee, M.; Alshahrani, A. Prediction of Severity of COVID-19-Infected Patients Using Machine Learning Techniques. Computers 2021, 10, 31. [Google Scholar] [CrossRef]
- MOHAP-UAE, Ministry of Health and Prevention (MOHAP), United Arab of Emirates. SEHA Opens 13 Additional Drive-through COVID-19 Testing Centres. Available online: https://www.mohap.gov.ae/en/MediaCenter/News/Pages/2365.aspx (accessed on 11 April 2020).
- Alandijany, T.A.; Faizo, A.A.; Azhar, E.I. Coronavirus Disease of 2019 (COVID-19) in The Gulf Cooperation Council (GCC) Countries: Current Status and Management Practices. J. Infect. Public Health 2020, 13, 839–842. [Google Scholar] [CrossRef] [PubMed]
- MOPH-Qatar, Ministry of Public Health, Qatar. Available online: https://twitter.com/MOPHQatar/status/1233744372556029952?s=20 (accessed on 11 April 2020).
- Shahid, F.; Zameer, A.; Muneeb, M. Predictions For COVID-19 with Deep Learning Models of LSTM, GRU and Bi-LSTM. Chaos Solitons Fractals 2020, 140, 110212. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, C.; Banerjee, A.; Garg, L.; Rodrigues, J.J.P.C. (Eds.) Studies in Big Data; Springer: Singapore, 2020; pp. 31–63. [Google Scholar]
- Rustam, F.; Reshi, A.A.; Mehmood, A.; Ullah, S.; On, B.; Aslam, W.; Choi, G.S. COVID-19 Future Forecasting Using Supervised Machine Learning Models. IEEE Access 2020, 8, 101489–101499. [Google Scholar] [CrossRef]
- Ochodek, M.; Kopczyńska, S.; Staron, M. Deep Learning Model for End-to-End Approximation of COSMIC Functional Size Based on Use-Case Names. Inf. Softw. Technol. 2020, 123, 106310. [Google Scholar] [CrossRef]
- Hu, F.; Zhu, Y.; Liu, J.; Li, L. An Efficient Long Short-Term Memory Model Based on Laplacian Eigenmap in Artificial Neural Networks. Appl. Soft Comput. 2020, 91, 106218. [Google Scholar] [CrossRef]
- Wen, S.; Wang, Y.; Tang, Y.; Xu, Y.; Li, P.; Zhao, T. Real-Time Identification of Power Fluctuations Based on LSTM Recurrent Neural Network: A Case Study on Singapore Power System. IEEE Trans. Ind. Inform. 2019, 15, 5266–5275. [Google Scholar] [CrossRef]
- Musulin, J.; Baressi Šegota, S.; Štifanić, D.; Lorencin, I.; Anđelić, N.; Šušteršič, T.; Blagojević, A.; Filipović, N.; Ćabov, T.; Markova-Car, E. Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 4287. [Google Scholar] [CrossRef]
- Al-Turaiki, I.; Almutlaq, F.; Alrasheed, H.; Alballa, N. Empirical Evaluation of Alternative Time-Series Models for COVID-19 Forecasting in Saudi Arabia. Int. J. Environ. Res. Public Health 2021, 18, 8660. [Google Scholar] [CrossRef] [PubMed]
- Abuhasel, K.A.; Khadr, M.; Alquraish, M.M. Analyzing and Forecasting COVID-19 Pandemic in the Kingdom of Saudi Arabia Using ARIMA and SIR Models. Comput. Intell. 2020, 12407, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Omran, N.F.; Abd-el Ghany, S.F.; Saleh, H.; Ali, A.A.; Gumaei, A.; Al-Rakhami, M. Applying Deep Learning Methods on Time-Series Data for Forecasting COVID-19 in Egypt, Kuwait, and Saudi Arabia. Complexity 2021, 2021, 6686745. [Google Scholar] [CrossRef]
- Ardabili, S.F.; Mosavi, A.; Ghamisi, P.; Ferdinand, F.; Varkonyi-Koczy, A.R.; Reuter, U.; Rabczuk, T.; Atkinson, P.M. COVID-19 Outbreak Prediction with Machine Learning. Algorithms 2020, 13, 249. [Google Scholar] [CrossRef]
- Pinter, G.; Felde, I.; Mosavi, A.; Ghamisi, P.; Gloaguen, R. COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach. Mathematics 2020, 8, 890. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, H.; Lin, C.; Liu, D.; Yu, D. A Novel GRU-RNN Network Model For Dynamic Path Planning of Mobile Robot. IEEE Access 2019, 7, 15140–15151. [Google Scholar] [CrossRef]
- Jamshidi, M.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Hadjilooei, F.; Lalbakhsh, P.; Jamshidi, M.; La Spada, L.; Mirmozafari, M.; Dehghani, M.; et al. Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment. IEEE Access 2020, 8, 109581–109595. [Google Scholar] [CrossRef]
- Jamshidi, M.B.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Roshani, S.; Matousek, V.; Roshani, S.; Mirmozafari, M.; Malek, Z.; La Spada, L.; et al. Deep Learning Techniques and COVID-19 Drug Discovery: Fundamentals, State-of-the-Art and Future Directions. In Emerging Technologies During the Era of COVID-19 Pandemic; Studies in Systems, Decision and Control; Arpaci, I., Al-Emran, M., Al-Sharafi, M.A., Marques, G., Eds.; Springer: Berlin/Heidleberg, Germany, 2021; 348p. [Google Scholar]
- Zhiheng, H.; Wei, X.; Yu, K. Bidirectional LSTM-CRF Models for Sequence Tagging. arXiv 2015, arXiv:1508.01991. [Google Scholar]
- Kafieh, R.; Saeedizadeh, N.; Arian, R.; Amini, Z.; Serej, N.D.; Vaezi, A.; Javanmard, S.H. Isfahan and COVID-19: Deep spatiotemporal representation. Chaos Solitons Fractals 2020, 141, 110339. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, X.; Ai, G.; Liu, D.; Zhu, B. Time Series Prediction for the Epidemic Trends of COVID-19 Using the Improved LSTM Deep Learning Method: Case Studies in Russia, Peru and Iran. Chaos Solitons Fractals 2020, 140, 110214. [Google Scholar] [CrossRef]
- Chimmula, V.K.R.; Zhang, L. Time Series Forecasting of COVID-19 Transmission in Canada Using LSTM Networks. Chaos Solitons Fractals 2020, 135, 109864. [Google Scholar] [CrossRef]
- Raj, N.; Brown, J. An EEMD-BiLSTM Algorithm Integrated with Boruta Random Forest Optimiser for Significant Wave Height Forecasting along Coastal Areas of Queensland, Australia. Remote Sens. 2021, 13, 1456. [Google Scholar] [CrossRef]
- Rashed, E.A.; Hirata, A. One-Year Lesson: Machine Learning Prediction of COVID-19 Positive Cases with Meteorological Data and Mobility Estimate in Japan. Int. J. Environ. Res. Public Health 2021, 18, 5736. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, H.; Zou, D.; Fu, H. Ship Roll Prediction Algorithm Based on Bi-LSTM-TPA Combined Model. J. Mar. Sci. Eng. 2021, 9, 387. [Google Scholar] [CrossRef]
- Stevenson, F.; Hayasi, K.; Bragazzi, N.L.; Kong, J.D.; Asgary, A.; Lieberman, B.; Ruan, X.; Mathaha, T.; Dahbi, S.-E.; Choma, J.; et al. Development of an Early Alert System for an Additional Wave of COVID-19 Cases Using a Recurrent Neural Network with Long Short-Term Memory. Int. J. Environ. Res. Public Health 2021, 18, 7376. [Google Scholar] [CrossRef] [PubMed]
- Satu, M.S.; Howlader, K.C.; Mahmud, M.; Kaiser, M.S.; Shariful Islam, S.M.; Quinn, J.M.W.; Alyami, S.A.; Moni, M.A. Short-Term Prediction of COVID-19 Cases Using Machine Learning Models. Appl. Sci. 2021, 11, 4266. [Google Scholar] [CrossRef]
- Zisad, S.N.; Hossain, M.S.; Hossain, M.S.; Andersson, K. An Integrated Neural Network and SEIR Model to Predict COVID-19. Algorithms 2021, 14, 94. [Google Scholar] [CrossRef]
- Awwad, F.A.; Mohamoud, M.A.; Abonazel, M.R. Estimating COVID-19 cases in Makkah region of Saudi Arabia: Space-time ARIMA modeling. PLoS ONE 2021, 16, e0250149. [Google Scholar] [CrossRef] [PubMed]
- Tandon, H.; Ranjan, P.; Chakraborty, T.; Suhag, V. Coronavirus (COVID-19): ARIMA based time-series analysis to forecast near future. arXiv 2020, arXiv:2004.07859. [Google Scholar]
Date | Countries | Responses |
---|---|---|
6 February 2020 | Saudi Arabia | Suspension of flights from and to China |
27 February 2020 28 February 2020 | Suspension of Umrah and tourism for foreign nationals | |
5 March 2020 | Prevention of congregational prayers in Makkah mosques | |
8 March 2020 | Imposition of lockdown in Al-Qatif | |
9 March 2020 | Closure of schools and universities | |
14 March 2020 | Suspension of flights to the European Union countries | |
17 March 2020 | Canceling of sports events and closure of mosques | |
25 March 2020 | Movement between provinces banned; lockdown imposed in Makkah, Madinah, and Riyadh; leaving homes prohibited from 3 pm to 6 am | |
29 March 2020 | Lockdown imposed in Jeddah; people allowed to buy essentials only from 6 am to 3 pm | |
31 January 2020 | UAE | Care and treatment for COVID-19 patients provided free of charge |
28 February 2020 | Imposition of home quarantine for people in contact with COVID-19 patients | |
Shutdown of some hotels | ||
8 March 2020 | Closure of schools and universities | |
15 March 2020 | Shutdown of cinemas, gyms, and parks | |
22 March 2020 | Prevention of COVID-19 spread through disinfection and sanitization campaigns | |
25 March 2020 | Banning travel to and from the country. | |
26 March 2020 | Imposition of night curfew | |
28 March 2020 | Launch of first drive-through COVID-19 testing sites | |
4 April 2020 | Imposition of 24 h curfew in Dubai | |
10 April 2020 | Addition of 13 drive-through testing centers for COVID-19 | |
12 April 2020 | Operation of repatriation flights | |
12 March 2020 | Kuwait | Shutdown of schools and universities |
12 March, 2020 | Imposition of lockdown till 26 March 2020 | |
13 March 2020 | Cessation of operation of international flights | |
26 March 2020 | Shutdown of some shops, restaurants, and mosques | |
9 March 2020 | Oman | Cessation of operations from and to Milan and Italy |
12 March 2020 | Suspension of flights from and to Saudi Arabia | |
Issuance of orders to form a supreme committee to deal with COVID-19 | ||
14 March 2020 | Shutdown of schools and universities | |
15 March 2020 | Cessation of visa issuance to all countries, banning of sports events | |
17 March 2020 | Banning of congregational prayers in mosques and large gatherings | |
18 March 2020 | Suspension of entry into the country, even for people from GCC countries | |
22 March 2020 | Banning of more flights from different countries | |
27 March 2020 | Prevention of COVID-19 through disinfection and sanitization campaigns | |
29 March 2020 | Banning of nationwide and international flights | |
12 April 2020 | Prevention of movements between governorates | |
20 April 2020 | Extension of the lockdown in Muscat till 8 May 2020. Prevention of social gatherings and sports events in Ramadan | |
28 April 2020 | Reopening of some businesses and commercial establishments | |
4 May 2020 | Extension of the lockdown in Muscat till 29 May 2020 | |
24 February 2020 | Bahrain | Banning of flights from and to Iran and the UAE |
25 February 2020 | Shutdown of schools and universities | |
26 February 2020 | Banning of flights from and to Iraq and Lebanon | |
26 February 2020 | Medical examinations ordered for travelers from Iran | |
23 March 2020 | Shutdown of mosques. | |
24 March 2020 | Limited time given for people to buy essentials from 5 am to 6 pm | |
Prevention of disinfectant exports | ||
26 March 2020 | Closure and regulation of some shops and restaurants | |
30 March 2020 | Launch of COVID-19 testing for the people | |
31 March 2020 | Release of a mobile application to alert people of COVID-19 patients and the areas they have visited | |
22 April 2020 | Prevention of social gatherings and sports throughout Ramadan | |
14 May 2020 | Private hospitals granted permission to start COVID-19 testing | |
9 March 2020 | Qatar | Shutdown of schools and universities Suspension of international flights from and to the countries hit by COVID-19 |
14 March 2020 | Suspension of more international flights | |
16 March 2020 | Prevention of congregational prayers in mosques | |
21 March 2020 | Shutdown of all cafes, restaurants, and beaches |
Country | Start Date | Number of Simples | Time Period | End Date |
---|---|---|---|---|
Saudi Arabia | 3 March 2020 | 93 | 146 days | 8 June 2020 |
Oman | 25 February 2020 | 86 | 164 days | |
Kuwait | 24 February 2020 | 124 | 165 days | |
Bahrain | 24 February 2020 | 100 | 164 days | |
United Arab Emirates | 27 January 2020 | 103 | 192 days | |
Qatar | 1 March 2020 | 106 | 281 days |
Countries | Start Date | Number of Simples | Time Periods | End Date |
---|---|---|---|---|
Saudi Arabia | 25 March 2020 | 85 | 135 days | 8 June 2020 |
Oman | 1 April 2020 | 64 | 280 days | |
Kuwait | 5 April 2020 | 69 | 124 days | |
Bahrain | 17 March 2020 | 55 | 144 days | |
United Arab Emirates | 22 March 2020 | 84 | 137 days | |
Qatar | 29 March 2020 | 80 | 130 days |
Parameters of the LSTM Algorithm | |
---|---|
Number of hidden layers | 200 |
Number of delays | [1–3] |
Number of shallow hidden layers | [3050] |
Number Max epochs used in model | 400 |
Number of Mini batch size used in model | 64 |
Execute environment | CPU |
Number of Max iterations | 250 |
Dropout | 0.5 |
Optimization function | Adam |
Metrics | Saudi Arabia | Oman | UAE | Kuwait | Bahrain | Qatar |
---|---|---|---|---|---|---|
MSE | 4.4217 × 10−5 | 03.9035 × 10−5 | 0.000916 | 2.1228 × 10−5 | 5.7006 × 10−5 | 2.1719 × 10−5 |
RMSE | 0.00664 | 0.0062 | 0.030 | 0.00460 | 0.00755 | 0.00466 |
NRMSE | 0.00372 | 0.0633 | 0.077 | 0.0528 | 0.06109 | 0.032 |
Saudi Arabia | Oman | UAE | Kuwait | Bahrain | Qatar | |
---|---|---|---|---|---|---|
MSE | 3.8242 × 10−5 | 0.000169 | 0.000466 | 0.00197 | 0.000537 | 0.00134 |
RMSE | 0.00618 | 0.013025 | 0.02159 | 0.0140 | 0.02317 | 0.0116 |
NRMSE | 0.036 | 0.0763 | 0.0530 | 0.0582 | 0.0894 | 0.0777 |
Saudi Arabia | Oman | UAE | Kuwait | Bahrain | Qatar | |
---|---|---|---|---|---|---|
MSE | 0.00014 | 0.00161 | 0.0116 | 0.00149 | 0.000111 | 0.0005095 |
RMSE | 0.01222 | 0.0401 | 0.1081 | 0.0386 | 0.01053 | 0.02257 |
NRMSE | 0.0163 | 0.0651 | 0.0607 | 0.0509 | 0.01453 | 0.02761 |
Saudi Arabia | Oman | UAE | Kuwait | Bahrain | Qatar | |
---|---|---|---|---|---|---|
MSE | 0.00140 | 0.00354 | 0.000205 | 0.000152 | 0.00780 | 0.000431 |
RMSE | 0.0374 | 0.0595 | 0.0143 | 0.01233 | 0.08835 | 0.020779 |
NRMSE | 0.052 | 0.0853 | 0.0148 | 0.0145 | 0.1274 | 0.02941 |
Oman | Saudi Arabia | ||||
---|---|---|---|---|---|
Errors | Prediction | Target | Errors | Prediction | Target |
0.0162 | 0.361 | 0.3772 | 0.0079 | 0.5877 | 0.5798 |
0.02 | 0.3815 | 0.4023 | 0.0078 | 0.6 | 0.5922 |
0.024 | 0.4048 | 0.4297 | 0.0062 | 0.6129 | 0.6066 |
0.03 | 0.4301 | 0.4601 | 0.0066 | 0.6265 | 0.6198 |
0.001 | 0.4591 | 0.4601 | 0.0031 | 0.64027 | 0.637 |
0.002 | 0.4785 | 0.4808 | 0.0021 | 0.6556 | 0.6578 |
0.00021 | 0.4961 | 0.4959 | 0.0048 | 0.6732 | 0.6781 |
0.024 | 0.5088 | 0.5335 | 0.0073 | 0.6932 | 0.7005 |
0.046 | 0.5347 | 0.5816 | 0.0074 | 0.71492 | 0.7223 |
0.046 | 0.5704 | 0.6173 | 0.0101 | 0.7369 | 0.7471 |
0.065 | 0.6123 | 0.6774 | 0.0114 | 0.7605 | 0.7719 |
0.061 | 0.6622 | 0.7239 | 0.0131 | 0.7848 | 0.798 |
0.046 | 0.7114 | 0.7581 | 0.0098 | 0.8105 | 0.8204 |
0.042 | 0.759 | 0.8018 | 0.0131 | 0.8354 | 0.8486 |
0.046 | 0.8013 | 0.8479 | 0.0172 | 0.8613 | 0.8786 |
0.049 | 0.8437 | 0.8936 | 0.0184 | 0.8885 | 0.907 |
0.059 | 0.8896 | 0.9486 | 0.022 | 0.9177 | 0.9397 |
0.023 | 0.9482 | 0.9713 | |||
Kuwait | UAE | ||||
Errors | Prediction | Target | Errors | Prediction | Target |
0.0012 | 0.525 | 0.5263 | 0.0797 | 1.4635 | 1.5432 |
0.00798 | 0.5595 | 0.5515 | 0.0823 | 1.4802 | 1.5625 |
0.00687 | 0.5911 | 0.5842 | 0.0863 | 1.4967 | 1.583 |
0.01071 | 0.6249 | 0.6142 | 0.088 | 1.5138 | 1.6018 |
0.01504 | 0.6575 | 0.6425 | 0.0922 | 1.531 | 1.6233 |
0.022 | 0.6908 | 0.6688 | 0.0967 | 1.549 | 1.6458 |
0.0321 | 0.7218 | 0.6897 | 0.1023 | 1.5677 | 1.67 |
0.0404 | 0.7492 | 0.7088 | 0.1051 | 1.5879 | 1.693 |
0.0427 | 0.7732 | 0.7305 | 0.11 | 1.6086 | 1.7187 |
0.0387 | 0.7958 | 0.757 | 0.1093 | 1.6302 | 1.7396 |
0.0298 | 0.8205 | 0.7907 | 0.1089 | 1.6507 | 1.7597 |
0.0283 | 0.8506 | 0.8223 | 0.1104 | 1.6704 | 1.7809 |
0.035 | 0.8841 | 0.8491 | 0.112 | 1.6889 | 1.801 |
0.0454 | 0.9171 | 0.8716 | 0.1166 | 1.7071 | 1.8237 |
0.0464 | 0.946 | 0.8995 | 0.112 | 1.7262 | 1.8382 |
0.0518 | 0.9737 | 0.9218 | 0.1116 | 1.743 | 1.8547 |
0.0602 | 0.9997 | 0.9394 | 0.1144 | 1.7589 | 1.8734 |
0.061 | 1.0236 | 0.9621 | 0.1166 | 1.7738 | 1.8904 |
0.068 | 1.0458 | 0.97748 | 0.1174 | 1.7893 | 1.9068 |
0.1173 | 1.8047 | 1.9221 | |||
0.1176 | 1.8192 | 1.9368 | |||
0.1208 | 1.833 | 1.9538 | |||
0.1228 | 1.8471 | 1.9699 | |||
0.1247 | 1.8613 | 1.986 | |||
Qatar | Bahrain | ||||
Errors | Prediction | Target | Errors | Prediction | Target |
0.0017 | 0.6208 | 0.6191 | 0.00067 | 0.5095 | 0.5102 |
0.0021 | 0.6444 | 0.6466 | |||
0.004 | 0.6706 | 0.6659 | |||
0.0115 | 0.6953 | 0.6837 | 0.00573 | 0.5285 | 0.5343 |
0.0128 | 0.7179 | 0.7051 | 0.00257 | 0.5511 | 0.5537 |
0.0111 | 0.7385 | 0.7273 | 0.0048 | 0.5748 | 0.5699 |
0.0142 | 0.7601 | 0.7458 | 0.00043 | 0.5958 | 0.5962 |
0.0155 | 0.7819 | 0.7664 | 0.00116 | 0.6178 | 0.619 |
0.017 | 0.8033 | 0.7863 | 0.0197 | 0.6409 | 0.6212 |
0.0189 | 0.8239 | 0.8049 | 0.0241 | 0.6586 | 0.6344 |
0.0235 | 0.8445 | 0.8209 | 0.0194 | 0.6719 | 0.6525 |
0.0223 | 0.8634 | 0.8411 | 0.0031 | 0.684 | 0.6809 |
0.0213 | 0.8825 | 0.8611 | 0.0024 | 0.7053 | 0.7078 |
0.0236 | 0.902 | 0.8784 | 0.0001 | 0.7312 | 0.7311 |
0.0257 | 0.9219 | 0.8962 | 0.0134 | 0.7586 | 0.772 |
0.0233 | 0.9409 | 0.9176 | 0.0087 | 0.7908 | 0.7996 |
0.0289 | 0.9604 | 0.9314 | 0.01104 | 0.8229 | 0.8339 |
0.0323 | 0.9786 | 0.9463 | 0.0094 | 0.8585 | 0.868 |
0.0354 | 0.9958 | 0.9604 | 0.0086 | 0.892 | 0.9006 |
0.0372 | 1.0105 | 0.9732 | 0.0102 | 0.9269 | 0.9371 |
0.0367 | 1.0248 | 0.9881 | 0.0117 | 0.9625 | 0.9743 |
Oman | Saudi Arabia | ||||
---|---|---|---|---|---|
Errors | Prediction | Target | Errors | Prediction | Target |
0.0394 | 0.4864 | 0.5258 | 0.0243 | 0.4643 | 0.4886 |
0.0302 | 0.5 | 0.5302 | 0.0294 | 0.4862 | 0.5156 |
0.0085 | 0.527 | 0.5356 | 0.0308 | 0.511 | 0.5418 |
0.024 | 0.527 | 0.551 | 0.0328 | 0.5378 | 0.5706 |
0.01 | 0.554 | 0.5649 | 0.0353 | 0.5657 | 0.601 |
0.037 | 0.6216 | 0.5844 | 0.035 | 0.5947 | 0.6298 |
0.041 | 0.66216 | 0.6206 | 0.0365 | 0.6245 | 0.661 |
0.114 | 0.78378 | 0.669 | 0.0364 | 0.6551 | 0.6915 |
0.139 | 0.89189 | 0.7526 | 0.0379 | 0.6856 | 0.7236 |
0.041 | 0.89189 | 0.85 | 0.0367 | 0.7172 | 0.754 |
0.033 | 0.9594 | 0.9258 | 0.0384 | 0.7485 | 0.787 |
0.0265 | 0.9594 | 0.9859 | 0.0402 | 0.7806 | 0.8208 |
0.0405 | 0.8132 | 0.8538 | |||
0.0419 | 0.8465 | 0.8884 | |||
0.0411 | 0.8803 | 0.9214 | |||
0.0482 | 0.9137 | 0.962 | |||
Kuwait | UAE | ||||
Errors | Prediction | Target | Errors | Prediction | Target |
0.0005 | 0.6991 | 0.6996 | 0.9212 | 0.9161 | |
0.0079 | 0.7259 | 0.7338 | 0.9321 | 0.9234 | |
0.0204 | 0.7553 | 0.7757 | 0.9437 | 0.9343 | |
0.0074 | 0.7948 | 0.8023 | 0.9554 | 0.9416 | |
0.0027 | 0.8299 | 0.8327 | 0.9636 | 0.9489 | |
0.008 | 0.8637 | 0.8555 | 0.9718 | 0.9562 | |
0.02 | 0.8909 | 0.8707 | 0.9788 | 0.9635 | |
0.0204 | 0.914 | 0.8935 | 0.9859 | 0.9745 | |
0.01 | 0.9348 | 0.924 | 0.9942 | 0.9781 | |
0.0035 | 0.9584 | 0.962 | 1.001 | 0.9891 | |
1.0093 | 0.9927 | ||||
1.0151 | 0.9964 | ||||
Qatar | Bahrain | ||||
Errors | Prediction | Target | Errors | Prediction | Target |
0.018 | 0.4963 | 0.4782 | 0.0642 | 0.4557 | 0.52 |
0.0076 | 0.5141 | 0.5217 | 0.0376 | 0.4823 | 0.52 |
0.0045 | 0.539 | 0.5434 | 0.014 | 0.5059 | 0.52 |
0.0126 | 0.5634 | 0.576 | 0.0429 | 0.517 | 0.56 |
0.0106 | 0.5981 | 0.6086 | 0.0288 | 0.5311 | 0.56 |
0.0332 | 0.6298 | 0.663 | 0.0164 | 0.5436 | 0.56 |
0.0326 | 0.6738 | 0.7065 | 0.0853 | 0.5547 | 0.64 |
0.0182 | 0.7209 | 0.7391 | 0.1372 | 0.5828 | 0.72 |
0.0161 | 0.7662 | 0.75 | 0.0843 | 0.6356 | 0.72 |
0.0453 | 0.7953 | 0.75 | 0.0375 | 0.6825 | 0.72 |
0.0264 | 0.809 | 0.7826 | 0.0554 | 0.7045 | 0.76 |
0.0104 | 0.8257 | 0.8152 | 0.0815 | 0.7184 | 0.8 |
0.0083 | 0.8504 | 0.8586 | 0.1353 | 0.7447 | 0.88 |
0.0088 | 0.8893 | 0.8804 | 0.1243 | 0.7957 | 0.92 |
0.00086 | 0.9231 | 0.9239 |
Number of Confirmed Cases | Number of Mortality Cases | |||
---|---|---|---|---|
Training (%) | Testing (%) | Training (%) | Testing (%) | |
Saudi Arabia | 98.988 | 99.37 | 99.83 | 99.96 |
Oman | 99.70 | 99.19 | 99.01 | 92.57 |
UAE | 94.16 | 99.81 | 99.53 | 98.42 |
Kuwait | 99.91 | 98.99 | 99.52 | 98.27 |
Bahrain | 99.77 | 99.31 | 94.16 | 92.09 |
Qatar | 99.94 | 99.57 | 98.88 | 97.73 |
Author/References | Models | Region | Time Periods | RMSE | R2 | NRMSE |
---|---|---|---|---|---|---|
Stevenson et al. [81] | LSTM RNN model Naïve Seasonal Naïve Forecast | South Africa | 14 and 7 days | 76.57 89.43 79.99 | ||
Satu et al. [82] | Poly-MLP | Bangladesh | 8 march 2020 to 28 November 2020 | 2.3675 | 93.94 | |
SVR | 2.4589 | 76.60 | ||||
Prophet | 1.3350 | 98.77 | ||||
Zisad et al. [83] | SEIR model SIR with NN | Bangladesh | 250 days | 0.797 0.835 | 0.917 | 1.99 to 0.68 |
Awwad et al. [84] | STARM | Saudi Arabia | 23 March 2020 to 28 May 2020 | 0.339 (Taif city) 0.368 (Jeddah (city)) | ||
Tandon et al. [85] | ARIMA | USA, Chain, Italy France, others | 18 days 22 January 2020 to 13 April 2020 | 4.1 | ||
Proposed system | Bi-LSTM ( predict confirmed cases ) | Saudi Arabia, Oman, the United Arab Emirates (UAE), Kuwait, Bahrain, and Qatar | Maximum 280 days Minimum 124 days | 0.00019 (Training) | 99.98–94.16 | 0.016 |
Bi-LSTM (predict death cases) | Saudi Arabia, Oman, the United Arab Emirates (UAE), Kuwait, Bahrain, and Qatar | 0.00014(Training) | 99.83–94.16 | 0.077 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldhyani, T.H.H.; Alkahtani, H. A Bidirectional Long Short-Term Memory Model Algorithm for Predicting COVID-19 in Gulf Countries. Life 2021, 11, 1118. https://doi.org/10.3390/life11111118
Aldhyani THH, Alkahtani H. A Bidirectional Long Short-Term Memory Model Algorithm for Predicting COVID-19 in Gulf Countries. Life. 2021; 11(11):1118. https://doi.org/10.3390/life11111118
Chicago/Turabian StyleAldhyani, Theyazn H. H., and Hasan Alkahtani. 2021. "A Bidirectional Long Short-Term Memory Model Algorithm for Predicting COVID-19 in Gulf Countries" Life 11, no. 11: 1118. https://doi.org/10.3390/life11111118
APA StyleAldhyani, T. H. H., & Alkahtani, H. (2021). A Bidirectional Long Short-Term Memory Model Algorithm for Predicting COVID-19 in Gulf Countries. Life, 11(11), 1118. https://doi.org/10.3390/life11111118