Argan Oil as a Rich Source of Linoleic Fatty Acid for Dietetic Structured Lipids Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biocatalysts, Substrates, and Chemicals
2.2. Biocatalyst Screening
2.3. Time-Course Experiments
2.4. Modelling Acidolysis and Optimization of Reaction Conditions
2.5. Batch Operational Stability Assays
2.6. Reaction Products Analysis
3. Results and Discussion
3.1. Fatty Acid Composition of Argan Oil
3.2. Biocatalyst Screening
3.3. Time-Course Reaction
3.4. Modelling Acidolysis and Optimization of Reaction Conditions
3.5. Operational Stability
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ibarguren, M.; López, D.J.; Escribá, P.V. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. Biochim. Biophys. Acta Biomembr. 2014, 1838, 1518–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timm-Heinrich, M.; Xu, X.; Nielsen, N.S.; Jacobsen, C. Oxidative stability of milk drinks containing structured lipids produced from sunflower oil and caprylic acid. Eur. J. Lipid Sci. Technol. 2003, 105, 459–470. [Google Scholar] [CrossRef]
- Kadhum, A.A.H.; Shamma, M.N. Edible lipids modification processes: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 48–58. [Google Scholar] [CrossRef]
- Ferreira-Dias, S.; Sandoval, G.; Plou, F.; Valero, F. The potential use of lipases in the production of fatty acid derivatives for the food and nutraceutical industries. Electron. J. Biotechnol. 2013, 16, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-Dias, S.; Osório, N.M.; Rodrigues, J.; Tecelão, C. Structured lipids for foods. In Encyclopedia of Food Chemistry; Varelis, P., Melton, L., Shahidi, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 357–369. ISBN 9780128140260. [Google Scholar]
- Kim, B.H.; Akoh, C.C. Recent research trends on the enzymatic synthesis of structured lipids. J. Food Sci. 2015, 80, C1713–C1724. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, J.; Guo, Z.; Chen, B. Synthesis of novel medium-long-medium type structured lipids from microalgae oil via two-step enzymatic reactions. Process Biochem. 2018, 68, 108–116. [Google Scholar] [CrossRef]
- Rios, N.S.; Pinheiro, B.B.; Pinheiro, M.P.; Bezerra, R.M.; dos Santos, J.C.S.; Barros Gonçalves, L.R. Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process Biochem. 2018, 75, 99–120. [Google Scholar] [CrossRef]
- Lopes, P.A.; Pestana, J.M.; Coelho, D.; Madeira, M.S.; Alfaia, C.M.; Prates, J.A.M. From natural triacylglycerols to novel structured lipids containing n-3 long-chain polyunsaturated fatty acids. In The Molecular Nutrition of Fats; Patel, V., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 225–235. [Google Scholar] [CrossRef]
- Paul Martínez-Galán, J.; María Ontibón-Echeverri, C.; Campos Costa, M.; Batista-Duharte, A.; Guerso Batista, V.; Mesa, V.; Monti, R.; Veloso De Paula, A.; Martins Baviera, A. Enzymatic synthesis of capric acid-rich structured lipids and their effects on mice with high-fat diet-induced obesity. Food Res. Int. 2021, 148, 963–9969. [Google Scholar] [CrossRef]
- Lu, J.; Jin, Q.; Wang, X.; Wang, X. Preparation of medium and long chain triacylglycerols by lipase-catalyzed interesterification in a solvent-free system. Process Biochem. 2017, 54, 89–95. [Google Scholar] [CrossRef]
- Caballero, E.; Soto, C.; Olivares, A.; Altamirano, C. Potential use of avocado oil on structured lipids MLM-type production catalysed by commercial immobilised lipases. PLoS ONE 2014, 9, e107749. [Google Scholar] [CrossRef]
- Costa, C.M.; Osório, N.M.; Canet, A.; Rivera, I.; Sandoval, G.; Valero, F.; Ferreira-Dias, S. Production of MLM type structured lipids from grapeseed oil catalyzed by non-commercial lipases. Eur. J. Lipid Sci. Technol. 2018, 120, 1–8. [Google Scholar] [CrossRef]
- Akoh, C.C.; Pande, G. Structured Lipids and Health. In Bailey's Industrial Oil and Fat Products; Shahidi, F., Ed.; Wiley: Hoboken, NJ, USA, 2020; pp. 329–346. [Google Scholar] [CrossRef]
- Schönfeld, P.; Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J. Lipid Res. 2016, 57, 943–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, P.A.; Pires-Cabral, P.; Guillén, M.; Valero, F.; Ferreira-Dias, S. Batch operational stability of immobilized heterologous Rhizopus oryzae lipase during acidolysis of virgin olive oil with medium-chain fatty acids. Biochem. Eng. J. 2012, 67, 265–268. [Google Scholar] [CrossRef]
- Mota, D.A.; Santos, J.C.B.; Faria, D.; Lima, Á.S.; Krause, L.C.; Soares, C.M.F.; Ferreira-Dias, S. Synthesis of dietetic structured lipids from spent coffee grounds crude oil catalyzed by commercial immobilized lipases and immobilized Rhizopus oryzae lipase on biochar and hybrid support. Processes 2020, 8, 1542. [Google Scholar] [CrossRef]
- Abed, S.M.; Wei, W.; Ali, A.H.; Korma, S.A.; Mousa, A.H.; Hassan, H.M.; Jin, Q.; Wang, X. Synthesis of structured lipids enriched with medium-chain fatty acids via solvent-free acidolysis of microbial oil catalyzed by Rhizomucor miehei lipase. LWT 2018, 93, 306–315. [Google Scholar] [CrossRef]
- Bassan, N.; Rodrigues, R.H.; Monti, R.; Tecelão, C.; Ferreira-Dias, S.; Paula, A.V. Enzymatic modification of grapeseed (Vitis vinifera L.) oil aiming to obtain dietary triacylglycerols in a batch reactor. LWT 2019, 99, 600–606. [Google Scholar] [CrossRef] [Green Version]
- Casas-Godoy, L.; Marty, A.; Sandoval, G.; Ferreira-Dias, S. Optimization of medium chain length fatty acid incorporation into olive oil catalyzed by immobilized Lip2 from Yarrowia lipolytica. Biochem. Eng. J. 2013, 77, 20–27. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Gogate, P.; Annapure, U. Process intensification of acidolysis reaction catalysed by enzymes for synthesis of designer lipids using sonication. Chem. Eng. J. 2022, 428, 131374. [Google Scholar] [CrossRef]
- Mota, D.A.; Rajan, D.; Heinzl, G.C.; Osório, N.M.; Gominho, J.; Krause, L.C.; Soares, C.M.F.; Nampoothiri, K.M.; Sukumaran, R.K.; Ferreira-Dias, S. Production of low-calorie structured lipids from spent coffee grounds or olive pomace crude oils catalyzed by immobilized lipase in magnetic nanoparticles. Bioresour. Technol. 2020, 307, 123223. [Google Scholar] [CrossRef]
- Nunes, P.A.; Pires-Cabral, P.; Ferreira-Dias, S. Production of olive oil enriched with medium chain fatty acids catalysed by commercial immobilised lipases. Food Chem. 2011, 127, 993–998. [Google Scholar] [CrossRef]
- Nunes, P.A.; Pires-Cabral, P.; Guillén, M.; Valero, F.; Ferreira-Dias, S. Optimized production of MLM triacylglycerols catalyzed by immobilized heterologous Rhizopus oryzae lipase. JAOCS J. Am. Oil Chem. Soc. 2012, 89, 1287–1295. [Google Scholar] [CrossRef]
- Sharma, R.; Chisti, Y.; Banerjee, U.C. Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 2001, 19, 627–662. [Google Scholar] [CrossRef] [Green Version]
- Simões, T.; Valero, F.; Tecelão, C.; Ferreira-Dias, S. Production of human milk fat substitutes catalyzed by a heterologous Rhizopus oryzae lipase and commercial lipases. JAOCS J. Am. Oil Chem. Soc. 2014, 91, 411–419. [Google Scholar] [CrossRef]
- Tong, X.; Busk, P.K.; Lange, L. Characterization of a new sn-1,3-regioselective triacylglycerol lipase from Malbranchea cinnamomea. Biotechnol. Appl. Biochem. 2016, 63, 471–478. [Google Scholar] [CrossRef]
- Domínguez de María, P.; Sinisterra, J.V.; Tsai, S.-W.; Alcántara, A.R. Carica papaya lipase (CPL): An emerging and versatile biocatalyst. Biotechnol. Adv. 2006, 24, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, D.; Charrouf, Z. Argan oil and other argan products: Use in dermocosmetology. Eur. J. Lipid Sci. Technol. 2011, 113, 403–408. [Google Scholar] [CrossRef]
- Haimeur, A.; Meskini, N.; Mimouni, V.; Ulmann, L.; Messaouri, H.; Pineau-Vincent, F.; Abouakil, N.; Tremblin, G. A comparative study on the effect of argan oil versus fish oil on risk factors for cardio-vascular disease in high-fat-fed rats. Nutrition 2019, 57, 32–39. [Google Scholar] [CrossRef]
- Pagliuca, G.; Bozzi, C.; Gallo, F.R.; Multari, G.; Palazzino, G.; Porrà, R.; Panusa, A. Triacylglycerol “hand-shape profile” of Argan oil. Rapid and simple UHPLC-PDA-ESI-TOF/MS and HPTLC methods to detect counterfeit Argan oil and Argan-oil-based products. J. Pharm. Biomed. Anal. 2018, 150, 121–131. [Google Scholar] [CrossRef]
- Charrouf, Z.; Guillaume, D. The argan oil project: Going from utopia to reality in 20 years. OCL 2018, 25, D209. [Google Scholar] [CrossRef]
- Belcadi-Haloui, B.; Zekhnini, Z.; Hatimi, A. Comparative study of Argan and other edible oils stability under accelerated oxidation. Indian J. Sci. Technol. 2018, 11, 1–7. [Google Scholar] [CrossRef]
- Charrouf, Z.; Guillaume, D. Argan oil: Occurrence, composition and impact on human health. Eur. J. Lipid Sci. Technol. 2008, 110, 632–636. [Google Scholar] [CrossRef]
- Lundstedt, T.; Seifert, E.; Abramo, L.; Thelin, B.; Nyström, Å.; Pettersen, J.; Bergman, R. Experimental design and optimization. Chemom. Intell. Lab. Syst. 1998, 42, 3–40. [Google Scholar] [CrossRef]
- Tecelão, C.; Silva, J.; Dubreucq, E.; Ribeiro, M.H.; Ferreira-Dias, S. Production of human milk fat substitutes enriched in omega-3 polyunsaturated fatty acids using immobilized commercial lipases and Candida parapsilosis lipase/acyltransferase. J. Mol. Catal. B Enzym. 2010, 65, 122–127. [Google Scholar] [CrossRef]
- Duan, Z.Q.; Du, W.; Liu, D.H. The solvent influence on the positional selectivity of Novozym 435 during 1,3-diolein synthesis by esterication. Bioresour. Technol. 2010, 101, 2568–2571. [Google Scholar] [CrossRef]
- Vázquez, L.; González, N.; Reglero, G.; Torres, C. Solvent-free lipase-catalyzed synthesis of diacylgycerols as low-calorie food ingredients. Front. Bioeng. Biotechnol. 2016, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, Z.; Fernandez-Lorente, G.; Fernandez-Lafuente, R.; Palomo, J.M.; Guisan, J.M. Novozym 435 displays very different selectivity compared to lipase from Candida antarctica B adsorbed on other hydrophobic supports. J. Mol. Catal. B Enzym. 2009, 57, 171–176. [Google Scholar] [CrossRef]
- Turan, S.; Karabulut, I.; Vural, H. Effects of reaction parameters on the incorporation of caprylic acid into soybean oil for production of structured lipids. J. Food Lipids 2006, 13, 306–317. [Google Scholar] [CrossRef]
- Kim, I.H.; Kim, H.; Lee, K.T.; Chung, S.H.; Ko, S.N. Lipase-catalyzed acidolysis of perilla oil with caprylic acid to produce structured lipids. JAOCS J. Am. Oil Chem. Soc. 2002, 79, 363–367. [Google Scholar] [CrossRef]
- Sousa, V.; Campos, V.; Nunes, P.; Pires-Cabral, P. Incorporation of capric acid in pumpkin seed oil by sn-1,3 regioselective lipase-catalyzed acidolysis. OCL 2018, 25, A302. [Google Scholar] [CrossRef] [Green Version]
- Abed, S.M.; Zou, X.; Ali, A.H.; Jin, Q.; Wang, X. Synthesis of 1,3-dioleoyl-2-arachidonoylglycerol-rich structured lipids by lipase-catalyzed acidolysis of microbial oil from Mortierella alpina. Bioresour. Technol. 2017, 243, 448–456. [Google Scholar] [CrossRef]
- Stergiou, P.Y.; Foukis, A.; Filippou, M.; Koukouritaki, M.; Parapouli, M.; Theodorou, L.G.; Hatziloukas, E.; Afendra, A.; Pandey, A.; Papamichael, E.M. Advances in lipase-catalyzed esterification reactions. Biotechnol. Adv. 2013, 31, 1846–1859. [Google Scholar] [CrossRef]
- Haaland, P.D. Experimental Design in Biotechnology; CRC Press: New York, NY, USA, 1989; ISBN 9781003065968. [Google Scholar]
- Tecelão, C.; Rivera, I.; Sandoval, G.; Ferreira-Dias, S. Carica papaya latex: A low-cost biocatalyst for human milk fat substitutes production. Eur. J. Lipid Sci. Technol. 2012, 114, 266–276. [Google Scholar] [CrossRef]
- Wang, S.; Meng, X.; Zhou, H.; Liu, Y.; Secundo, F.; Liu, Y. Enzyme stability and activity in non-aqueous reaction systems: A mini review. Catalysts 2016, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.; Canet, A.; Rivera, I.; Osório, N.M.; Sandoval, G.; Valero, F.; Ferreira-Dias, S. Biodiesel production from crude Jatropha oil catalyzed by non-commercial immobilized heterologous Rhizopus oryzae and Carica papaya lipases. Bioresour. Technol. 2016, 213, 88–95. [Google Scholar] [CrossRef] [Green Version]
- De Martini Soares, F.A.S.; Osório, N.M.; da Silva, R.C.; Gioielli, L.A.; Ferreira-Dias, S. Batch and continuous lipase-catalyzed interesterification of blends containing olive oil for trans-free margarines. Eur. J. Lipid Sci. Technol. 2013, 115, 413–428. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Virgen-Ortíz, J.J.; dos Santos, J.C.S.; Berenguer-Murcia, Á.; Alcantara, A.R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Immobilization of lipases on hydrophobic supports: Immobilization mechanism, advantages, problems, and solutions. Biotechnol. Adv. 2019, 37, 746–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X. Production of specific-structured triacylglycerols by lipase-catalyzed reactions: A review. Eur. J. Lipid Sci. Technol. 2000, 102, 287–303. [Google Scholar] [CrossRef]
Fatty Acid | Lipid Number (C:D) | Percentage (% ± S.D.) | Normative Composition (Charrouf and Guillaume 2014) |
---|---|---|---|
Myristic | C 14:0 | 0.20 ± 0.01 | ≤0.2 |
Palmitic | C 16:0 | 14.31 ± 0.63 | 11.5–15.0 |
Palmitoleic | C 16:1 n9 | 0.14 ± 0.01 | ≤0.2 |
Stearic | C 18:0 | 6.18 ± 0.19 | 4.3–7.2 |
Oleic | C 18:1, n9 | 41.1 ± 2.90 | 43.0–49.1 |
Linoleic | C 18:2 n6 | 35.9 ± 1.40 | 29.3–36.0 |
α-Linolenic | C 18:3 n3 | 0.125 ± 0.01 | ≤0.3 |
Arachidic | C 20:0 | 0.31 ± 002 | ≤0.5 |
Gadoleic | C 20:1 n9 | 0.34 ± 0.01 | ≤0.5 |
Behenic | C 22:0 | 0.1 ± 0.001 | ≤0.2 |
∑ SFA | - | 21.2 ± 0.87 | - |
∑ MUFA | - | 42.4 ± 2.34 | - |
∑ PUFA | - | 36.27 ± 1.44 | - |
Experiments | Coded Matrix | Decoded Matrix | Incorporation (mol.%) | ||
---|---|---|---|---|---|
Temperature (°C) | Molar Ratio (C10:0/AO) | Temperature (°C) | Molar Ratio (C10:0/AO) | ||
1 | −1 | −1 | 44 | 2:1 | 27.7 |
2 | −1 | 1 | 44 | 6:1 | 35.4 |
3 | 1 | −1 | 62 | 2:1 | 36.9 |
4 | 1 | 1 | 62 | 6:1 | 39.7 |
5 | −1.414 | 0 | 40 | 4:1 | 32.1 |
6 | 1.414 | 0 | 66 | 4:1 | 40.9 |
7 | 0 | −1.414 | 53 | 1.2:1 | 19.0 |
8 | 0 | 1.414 | 53 | 6.8:1 | 37.8 |
9 | 0 | 0 | 53 | 4:1 | 34.7 |
10 | 0 | 0 | 53 | 4:1 | 37.2 |
11 | 0 | 0 | 53 | 4:1 | 32.5 |
Factor | Effect | p-Value |
---|---|---|
T (linear) | 6.41 | 0.043 |
T (quadratic) | 2.81 | 0.357 |
MR (linear) | 9.30 | 0.012 |
MR (quadratic) | −5.19 | 0.135 |
T X MR (linear) | −2.45 | 0.503 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões, T.; Ferreira, J.; Lemos, M.F.L.; Augusto, A.; Félix, R.; Silva, S.F.J.; Ferreira-Dias, S.; Tecelão, C. Argan Oil as a Rich Source of Linoleic Fatty Acid for Dietetic Structured Lipids Production. Life 2021, 11, 1114. https://doi.org/10.3390/life11111114
Simões T, Ferreira J, Lemos MFL, Augusto A, Félix R, Silva SFJ, Ferreira-Dias S, Tecelão C. Argan Oil as a Rich Source of Linoleic Fatty Acid for Dietetic Structured Lipids Production. Life. 2021; 11(11):1114. https://doi.org/10.3390/life11111114
Chicago/Turabian StyleSimões, Tiago, Jessica Ferreira, Marco F. L. Lemos, Ana Augusto, Rafael Félix, Susana F. J. Silva, Suzana Ferreira-Dias, and Carla Tecelão. 2021. "Argan Oil as a Rich Source of Linoleic Fatty Acid for Dietetic Structured Lipids Production" Life 11, no. 11: 1114. https://doi.org/10.3390/life11111114