Insights into the Geomicrobiology of Biovermiculations from Rock Billet Incubation Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rock Billet Collection and Preparation
2.2. Incubation Experiments
2.3. Enrichment and Incubation Media
- AIFeMn medium: Iron- and manganese-rich Actinomycete Isolation medium (AIFeMn) was prepared with 22.0 g of DifcoTM Actinomycete Isolation Agar powder, 0.5 g FeSO4·7H2O, 0.3 g of FeCl3·6H2O, 1.0 g of MnCl3·4H2O, 0.3 g of MnO2., in 1 L deionized water (ddH2O), with 5 g glycerol added after autoclaving. This medium is commonly used for the enrichment of iron and sulfur bacteria from soil and water.
- R2A + N medium: R2A + N was prepared by adding add 18.1 g R2A Agar (Oxoid CM 906) to 1 L of ddH2O and autoclaved for 20 min at 121 °C. After cooling, 10 mL of Nystatin was added [29]. Target organisms for this R2A + N medium are slow-growing bacteria, thus Nystatin is added to impede fungal growth.
- RASS medium: Reduced Arginine-Starch Salts (RASS) medium was prepared with 1.25 g of starch, 0.1 g of arginine, 1.0 g NaCl, 1.0 g K2HPO4, 0.5 g of MgSO4·7H2O, 15.0 g agar, in 1 L of ddH2O, with filter-sterilized trace elements (0.001 g CuSO4, 0.001 g MnSO4, 0.01 g Fe2(SO4)·6H2O, 0.001 g of ZnSO4·7H2O) added after autoclaving. RASS medium is commonly used for cultivating fungi.
- TMC medium: Trace Metals 44 [30], with carbon source added (0.1% w/v acetate). Used for rock-inhabiting organisms that are accustomed to very low organic carbon availability.
- V3 medium: Variant No. 3 (V3) was prepared with 0.5 g KNO3, 0.25 g Na2HPO4·12H2O, 0.5 g Ca succinate (3.54 g L−1 of succinic acid and 3.3 g L−1 of CaCl2·2H2O), and 15 g Oxoid agar in 1 L ddH2O, keeping the medium at pH 7.2. This was then autoclaved for 20 min at 121 °C and cooled to ~55 °C [31]. V3 medium has been used to cultivate bacterial communities from carbonate deposits, and microorganisms grown on this medium often produce visible CaCO3 precipitation [32].
- V5 medium: Variant No. 5 (V5) was prepared by mixing 0.25 g Na2HPO4·12H2O, 5.0 g Ca succinate, 2.5 g CaSO4, and 15 g Bacto Agar powder (Difco) in 1 L ddH2O, keeping the medium at pH 7.2 (modified from [31]). This medium was selected to grow strains or assemblages capable of calcite precipitation [32] but that use a different nitrogen source from the V3 medium.
- Fe carbonate medium: Fe carbonate medium was prepared with 0.125 g K2HPO4, 0.05 g MgSO4·H2O, 0.0025 g FeCl3, 0.025 g FeCO3, and 3.75 g Bacto Agar (Difco) in 500 mL of ddH2O and adjusted to pH 6.6. This medium was used to provide a source of iron in a form that is commonly found in limestone matrices, as well as to supply an energy source for iron-oxidizing microorganisms.
- Mn carbonate medium: Mn carbonate medium was prepared with 0.125 g K2HPO4, 0.05 g MgSO4·H2O, 0.0025 g FeCl3, 0.025 g MnCO3, and 3.75 g of Bacto Agar (Difco) in 500 mL of ddH2O and adjusted to pH 6.6. This medium was used to provide a source of Mn similar to that found in limestone matrices and to provide a substrate for Mn-oxidizing microorganisms.
- TSI Agar: Triple sugar iron agar (TSI Agar) was prepared at half strength by combining 16.25 g of premixed TSI Agar powder (Difco) with 500 mL ddH2O in each flask. TSI Agar is customarily used to differentiate gram-negative bacteria of the Enterobacteriaceae family based on their fermentation of lactose, sucrose, and glucose and the production of H2S.
- AI Agar: Actinomycete Isolation (AI) Agar was prepared at half strength with 5.5 g AI agar powder and 1.25 g glycerol in 500 mL ddH2O. AI medium is designed for cultivation of aerobic Actinomyces from soil and water.
- Nutrient broth: Nutrient broth was prepared at half strength with 2.0 g premixed Nutrient Broth powder (Difco) in 500 mL of ddH2O for each flask. This was used to encourage growth of a wide range of organisms with high carbon and other nutritional requirements.
2.4. Scanning Electron Microscopy (SEM)
3. Results
3.1. Surface Alteration
3.2. Biofilm and Cellular Morphologies
3.3. Secondary Minerals
4. Discussion
4.1. Implications for Biological Substrate Alteration
4.2. Preservation Methods
4.3. Implications for Morphological Biosignatures and Life Detection
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boston, P.; Curnutt, J.; Gomez, E.; Schubert, K.; Strader, B. Patterned growth in extreme environments. In Proceedings of the Third IEEE International Conference on Space Mission Challenges for Information, Pasadena, CA, USA, 19–23 July 2009. [Google Scholar]
- Curnutt, J.; Gomez, E.; Schubert, K. Patterned growth in extreme environments. In Proceedings of the Bioastronomy 2007: Molecules, Microbes and Extraterrestrial Life, San Juan, PR, USA, 16–20 July 2007. [Google Scholar]
- Hill, C.A.; Forti, P. Cave Minerals of the World, 2nd ed.; National Speleological Society: Huntsville, AL, USA, 1997. [Google Scholar]
- Hose, L.D.; Pisarowicz, J.A.; Cueva de Villa Luz, T. Mexico: Reconnaissance study of an active sulfur spring cave and ecosystem. J. Cave Karst Stud. 1999, 61, 13–21. [Google Scholar]
- Jones, D.S.; Lyon, E.H.; Macalady, J.L. Geomicrobiology of biovermiculations from the Frasassi cave system, Italy. J. Cave Karst Stud. 2008, 70, 78–93. [Google Scholar]
- Strader, B.; Schubert, K.; Quintana, M.; Gomez, E.; Curnutt, J.; Boston, P. Estimation, modeling, and simulation of patterned growth in extreme environments. In Software Tools and Algorithms for Biological Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 157–170. [Google Scholar]
- Addesso, R.; Bellino, A.; D′Angeli, I.M.; De Waele, J.; Miller, A.Z.; Carbone, C.; Baldantoni, D. Vermiculations from karst caves: The case of Pertosa-Auletta system (Italy). Catena 2019, 182, 104178. [Google Scholar] [CrossRef]
- Hose, L.D.; Palmer, A.N.; Palmer, M.V.; Northup, D.E.; Boston, P.J.; DuChene, H.R. Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chem. Geol. 2000, 169, 399–423. [Google Scholar] [CrossRef]
- D’Angeli, I.M.; Ghezzi, D.; Leuko, S.; Firrincieli, A.; Parise, M.; Fiorucci, A.; Vigna, B.; Addesso, R.; Baldantoni, D.; Carbone, C. Geomicrobiology of a seawater-influenced active sulfuric acid cave. PLoS ONE 2019, 14, e0220706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boston, P.; Schubert, K.; Gomez, E.; Curnutt, J. A potential universal biosigniture at many scales. In Proceedings of the Astrobiology Science Conference, Chicago, IL, USA, 15–19 June 2015. [Google Scholar]
- Rietkerk, M.; Dekker, S.C.; De Ruiter, P.C.; van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 2004, 305, 1926–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bini, A.; Cavalli Gori, M.; Gori, S. A critical review of hypotheses on the origin of vermiculations. Int. J. Speleol. 1978, 10, 11–33. [Google Scholar] [CrossRef] [Green Version]
- Hose, L.D.; Northup, D.E. Biovermiculations: Living vermiculation-like deposits in Cueva de Villa Luz, Mexico [abstract]. J. Cave Karst Stud. 2004, 66, 112. [Google Scholar]
- Anelli, F.; Graniti, A. Aspetti microbiologici nella genesi delle vermicolazioni argillose delle Grotte di Castellana (Murge di Bari). Le Grotte d’Italia 1967, 4, 131–140. [Google Scholar]
- Camassa, M.M.; Febbroriello, P. Le foval della Grotta Zinzulusa in Publia (SE-Italia). Thalassia Salentia 2003, 26, 207–218. [Google Scholar]
- Cañaveras, J.C.; Sanchez-Moral, S.; Sloer, V.; Saiz-Jimenez, C. Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol. J. 2001, 18, 223–240. [Google Scholar]
- Cunningham, K.; Northup, D.; Pollastro, R.; Wright, W.; LaRock, E. Bacteria, fungi and biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environ. Geol. 1995, 25, 2–8. [Google Scholar] [CrossRef]
- Jones, B. Microbes in caves: Agents of calcite corrosion and precipitation. Geol. Soc. Lond. Spec. Publ. 2010, 336, 7–30. [Google Scholar] [CrossRef]
- Northup, D.E.; Lavoie, K.H. Geomicrobiology of caves: A review. Geomicrobiol. J. 2001, 18, 199–222. [Google Scholar]
- Spilde, M.N.; Northup, D.E.; Boston, P.J.; Schelble, R.T.; Dano, K.E.; Crossey, L.J.; Dahm, C.N. Geomicrobiology of cave ferromanganese deposits: A field and laboratory investigation. Geomicrobiol. J. 2005, 22, 99–116. [Google Scholar] [CrossRef]
- Boston, P.; Schubert, K. Biovermiculation biopatterns as universal signatures of extant and extinct life. In Proceedings of the GSA Annual Meeting, Denver, CO, USA, 25–28 September 2016. [Google Scholar]
- Cady, S.L.; Farmer, J.D.; Grotzinger, J.P.; Schopf, J.W.; Steele, A. Morphological biosignatures and the search for life on Mars. Astrobiology 2003, 3, 351–368. [Google Scholar] [CrossRef]
- Boston, P.; Spilde, M.; Northup, D.; Melim, L.; Soroka, D.; Kleina, L.; Lavoie, K.; Hose, L.; Mallory, L.; Dahm, C.; et al. Cave biosignature suites: Microbes, minerals, and Mars. Astrobiology 2001, 1, 25–55. [Google Scholar] [CrossRef]
- Kelly, H.; Boston, P.; Parness, A. Diagnostic characteristics of macroscopic biopatterns detected with a novel robotic platform. In Proceedings of the 47th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016. [Google Scholar]
- Kelly, H.S.; Boston, P.J.; Parness, A.J. Distinctive biopatterns for detection and characterization from a robotic platform. In Proceedings of the Conference on Biosignature Preservation and Detection in Mars Analog Environments, Incline Village, NV, USA, 16–18 May 2016. [Google Scholar]
- Northup, D.E.; Connolly, C.A.; Trent, A.; Peck, V.M.; Spilde, M.N.; Welbourn, W.C.; Natvig, D.O. The nature of bacterial communities in Four Windows Cave, El Malpais National Monument, New Mexico, USA. AMCS Bull. 2008, 19, 119–125. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; U.S. Geological Survey: Reston, VA, USA, 2013; p. 519. [Google Scholar]
- Kempner, E. Trace metal analysis of nutrient broth. Appl. Microbiol. 1967, 15, 1525. [Google Scholar] [CrossRef]
- Van de Kamp, J.L. Microbial Biodiversity in Tasmanian Caves. Ph.D. Thesis, University of Tasmania, Hobart, Tasmania, Australia, 2004. [Google Scholar]
- Atlas, R.M.; Parks, L.C. Handbook of Microbiological Media; CRC Press Inc.: Boca Raton, FL, USA, 1993. [Google Scholar]
- Danielli, H.; Edington, M. Bacterial calcification in limestone caves. Geomicrobiol. J. 1983, 3, 1–16. [Google Scholar] [CrossRef]
- Curry, M.D.; Boston, P.J.; Spilde, M.N.; Baichtal, J.F.; Campbell, A.R. Cottonballs, a unique subaqeous moonmilk, and abundant subaerial moonmilk in Cataract Cave, Tongass National Forest, Alaska. Int. J. Speleol. 2009, 38, 3. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, R.; Litvaitis, M.K. Hexamethyldisilazane for scanning electron microscopy of Gastrotricha. Biotech. Histochem. 2000, 75, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Young, K.D. Bacterial morphology: Why have different shapes? Curr. Opin. Microbiol. 2007, 10, 596–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, H.A.; Northup, D.E. Geomicrobiology in cave environments: Past, current and future perspectives. J. Cave Karst Stud. 2007, 69, 163–178. [Google Scholar]
- Jones, D.S.; Macalady, J.L. The snotty and the stringy: Energy for subsurface life in caves. In Their World: A Diversity of Microbial Environments; Hurst, C.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 203–224. [Google Scholar]
- Lavoie, K.H.; Northup, D.E.; Barton, H.A. Microbe–mineral interactions: Cave geomicrobiology. In Geomicrobiology; Jain, S., Khan, A., Rai, M., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 1–45. [Google Scholar]
- Napieralski, S.A.; Buss, H.L.; Brantley, S.L.; Lee, S.; Xu, H.; Roden, E.E. Microbial chemolithotrophy mediates oxidative weathering of granitic bedrock. Proc. Natl. Acad. Sci. USA 2019, 116, 26394–26401. [Google Scholar] [CrossRef] [PubMed]
- Popa, R.; Smith, A.R.; Popa, R.; Boone, J.; Fisk, M. Olivine-respiring bacteria isolated from the rock-ice interface in a lava-tube cave, a Mars analog environment. Astrobiology 2012, 12, 9–18. [Google Scholar] [CrossRef]
- Northup, D.E.; Dahm, C.N.; Melim, L.A.; Spilde, M.N.; Crossey, L.J.; Lavoie, K.H.; Mallory, L.M.; Boston, P.J.; Cunningham, K.I.; Barns, S.M. Evidence for geomicrobiological interactions in Guadalupe caves. J. Cave Karst Stud. 2000, 62, 80–90. [Google Scholar]
- Benzerara, K.; Yoon, T.H.; Menguy, N.; Tyliszczak, T.; Brown, G.E. Nanoscale environments associated with bioweathering of a Mg-Fe-pyroxene. Proc. Natl. Acad. Sci. USA 2005, 102, 979–982. [Google Scholar] [CrossRef] [Green Version]
- Parker, C.W.; Auler, A.S.; Barton, M.D.; Sasowsky, I.D.; Senko, J.M.; Barton, H.A. Fe (III) reducing microorganisms from iron ore caves demonstrate fermentative Fe (III) reduction and promote cave formation. Geomicrobiol. J. 2018, 35, 311–322. [Google Scholar] [CrossRef]
- Hutchens, E.; Valsami-Jones, E.; McEldowney, S.; Gaze, W.; McLean, J. The role of heterotrophic bacteria in feldspar dissolution–an experimental approach. Mineral. Mag. 2003, 67, 1157–1170. [Google Scholar] [CrossRef]
- Welch, S.; Ullman, W. The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5 and 35 C. Geochim. Cosmochim. Acta 1999, 63, 3247–3259. [Google Scholar] [CrossRef]
- Banfield, J.F.; Barker, W.W.; Welch, S.A.; Taunton, A. Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proc. Natl. Acad. Sci. USA 1999, 96, 3404–3411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldich, S.S. A study in rock-weathering. J. Geol. 1938, 46, 17–58. [Google Scholar] [CrossRef]
- Karrat, L.; Perruchot, A.; Macaire, J.-J. Weathering of a Quaternary glass-rich basalt in Bakrit, Middle Atlas Mountains, Morocco. Comparison with a glass-poor basalt. Geodin. Acta 1998, 11, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Cañaveras, J.C.; Cuezva, S.; Sanchez-Moral, S.; Lario, J.; Laiz, L.; Gonzalez, J.M.; Saiz-Jimenez, C. On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften 2006, 93, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska, M.; Adam, D.; Naômé, A.; Martinet, L.; Tenconi, E.; Całusińska, M.; Delfosse, P.; Hanikenne, M.; Baurain, D.; Compère, P. Assessment of the potential role of Streptomyces in cave moonmilk formation. Front. Microbiol. 2017, 8, 1181. [Google Scholar] [CrossRef] [Green Version]
- Melim, L.A.; Spilde, M.N. A new unified model for cave pearls: Insights from cave pearls in Carlsbad Cavern, New Mexico, USA. J. Sediment. Res. 2018, 88, 344–364. [Google Scholar] [CrossRef]
- Mansor, M.; Harouaka, K.; Gonzales, M.S.; Macalady, J.L.; Fantle, M.S. Transport-induced spatial patterns of sulfur isotopes (δ34S) as biosignatures. Astrobiology 2018, 18, 59–72. [Google Scholar] [CrossRef]
- Sauro, F.; Cappelletti, M.; Ghezzi, D.; Columbu, A.; Hong, P.-Y.; Zowawi, H.M.; Carbone, C.; Piccini, L.; Vergara, F.; Zannoni, D. Microbial diversity and biosignatures of amorphous silica deposits in orthoquartzite caves. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Carmichael, M.J.; Carmichael, S.K.; Santelli, C.M.; Strom, A.; Bräuer, S.L. Mn (II)-oxidizing bacteria are abundant and environmentally relevant members of ferromanganese deposits in caves of the upper Tennessee River Basin. Geomicrobiol. J. 2013, 30, 779–800. [Google Scholar] [CrossRef]
- Navarrete, J.U.; Cappelle, I.J.; Schnittker, K.; Borrok, D.M. Bioleaching of ilmenite and basalt in the presence of iron-oxidizing and iron-scavenging bacteria. Int. J. Astrobiol. 2013, 12, 123. [Google Scholar] [CrossRef]
- Addesso, R.; Gonzalez-Pimentel, J.L.; D’Angeli, I.M.; De Waele, J.; Saiz-Jimenez, C.; Jurado, V.; Miller, A.Z.; Cubero, B.; Vigliotta, G.; Baldantoni, D. Microbial community characterizing vermiculations from karst caves and its role in their formation. Microb. Ecol. 2020, 1–13. [Google Scholar] [CrossRef]
- D’Auria, G.; Artacho, A.; Rojas, R.A.; Bautista, J.S.; Méndez, R.; Gamboa, M.T.; Gamboa, J.R.; Gómez-Cruz, R. Metagenomics of bacterial diversity in Villa Luz caves with sulfur water springs. Genes 2018, 9, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurado, V.; Gonzalez-Pimentel, J.L.; Miller, A.Z.; Hermosin, B.; D’Angeli, I.M.; Tognini, P.; De Waele, J.; Saiz-Jimenez, C. Microbial communities in vermiculation deposits from an Alpine cave. Front. Earth Sci. 2020, 8, 635. [Google Scholar] [CrossRef]
- Hathaway, J.J.M.; Garcia, M.G.; Balasch, M.M.; Spilde, M.N.; Stone, F.D.; Dapkevicius, M.D.L.N.; Amorim, I.R.; Gabriel, R.; Borges, P.A.; Northup, D.E. Comparison of bacterial diversity in Azorean and Hawai′ian lava cave microbial mats. Geomicrobiol. J. 2014, 31, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Northup, D.; Melim, L.; Spilde, M.; Hathaway, J.; Garcia, M.; Moya, M.; Stone, F.; Boston, P.; Dapkevicius, M.; Riquelme, C. Lava cave microbial communities within mats and secondary mineral deposits: Implications for life detection on other planets. Astrobiology 2011, 11, 601–618. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Pimentel, J.L.; Miller, A.Z.; Jurado, V.; Laiz, L.; Pereira, M.F.; Saiz-Jimenez, C. Yellow coloured mats from lava tubes of La Palma (Canary Islands, Spain) are dominated by metabolically active Actinobacteria. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hathaway, J.J.M.; Sinsabaugh, R.L.; Dapkevicius, M.D.L.N.; Northup, D.E. Diversity of ammonia oxidation (amoA) and nitrogen fixation (nifH) genes in lava caves of Terceira, Azores, Portugal. Geomicrobiol. J. 2014, 31, 221–235. [Google Scholar] [CrossRef] [Green Version]
- Northup, D.; Lavoie, K. Microbial diversity and ecology of Lava caves. In Microbial Life of Cave Systems; Walter de Gruyter: Berlin, Germany, 2015; pp. 161–191. [Google Scholar]
- Fratesi, S.E.; Lynch, F.L.; Kirkland, B.L.; Brown, L.R. Effects of SEM preparation techniques on the appearance of bacteria and biofilms in the Carter Sandstone. J. Sediment. Res. 2004, 74, 858–867. [Google Scholar] [CrossRef]
- Kelly, H. A Suite of Diagnostic Morphological Biosignatures to Distinguish Biological vs. Abiotic Indicators in Geologic Materials Using a Robotic-Mounted Instrument Array. Ph.D. Thesis, New Mexico Institute of Mining and Technology, Socorro, NM, USA, 2020. [Google Scholar]
- Boston, P.; Alexander, C. Preservation of microbial-mineral biosignatures in caves and paleo springs. In Proceedings of the Biosignature Preservation and Detection in Mars Analog Environments, Incline Village, NV, USA, 16–18 May 2016. [Google Scholar]
- Chan, M.A.; Hinman, N.W.; Potter-McIntyre, S.L.; Schubert, K.E.; Gillams, R.J.; Awramik, S.M.; Boston, P.J.; Bower, D.M.; Des Marais, D.J.; Farmer, J.D. Deciphering biosignatures in planetary contexts. Astrobiology 2019, 19, 1075–1102. [Google Scholar] [CrossRef] [Green Version]
- Hays, L.E.; Graham, H.V.; Des Marais, D.J.; Hausrath, E.M.; Horgan, B.; McCollom, T.M.; Parenteau, M.N.; Potter-McIntyre, S.L.; Williams, A.J.; Lynch, K.L. Biosignature preservation and detection in Mars analog environments. Astrobiology 2017, 17, 363–400. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.A.; Lynne, B.Y.; Handley, K.M.; Jordan, S.; Farmer, J.D.; Guido, D.M.; Foucher, F.; Turner, S.; Perry, R.S. Tracing biosignature preservation of geothermally silicified microbial textures into the geological record. Astrobiology 2015, 15, 858–882. [Google Scholar] [CrossRef] [PubMed]
- Farmer, J.D.; Des Marais, D.J. Exploring for a record of ancient Martian life. J. Geophys. Res. Planets 1999, 104, 26977–26995. [Google Scholar] [CrossRef] [PubMed]
- Pace, N.R. The universal nature of biochemistry. Proc. Natl. Acad. Sci. USA 2001, 98, 805–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Röling, W.F.; Aerts, J.W.; Patty, C.L.; Ten Kate, I.L.; Ehrenfreund, P.; Direito, S.O. The significance of microbe-mineral-biomarker interactions in the detection of life on Mars and beyond. Astrobiology 2015, 15, 492–507. [Google Scholar] [CrossRef] [Green Version]
- Olsson-Francis, K.; Pearson, V.K.; Steer, E.D.; Schwenzer, S.P. Determination of geochemical bio-signatures in Mars-like basaltic environments. Front. Microbiol. 2017, 8, 1668. [Google Scholar] [CrossRef]
Flask Identifier | Medium | Rock Type 1 | Inoculum | Incubation Period |
---|---|---|---|---|
A | Fe Carbonate | Limestone | RASS | 468 days |
B | Fe Carbonate | Monzonite | V5 | 468 days |
C | Fe Carbonate | Basalt (BS) | TMC | 468 days |
D | AI | Basalt (4W) | AIFeMn | 468 days |
E | AI | Basalt (4W) | RASS | 468 days |
F | AI | Basalt (BS) | V5 | 468 days |
G | Mn Carbonate | Basalt (4W) | R2A + N | 604 days |
H | Mn Carbonate | Monzonite | V5 | 604 days |
I | Mn Carbonate | Limestone | RASS | 604 days |
J | Nutrient Both | Monzonite | R2A + N | 468 days |
K | Nutrient Both | Limestone | V5 | 468 days |
L | Nutrient Both | Basalt (4W) | RASS | 468 days |
M | Triple Sugar Fe Agar | Basalt (4W) | V5 | 604 days |
N | Triple Sugar Fe Agar | Monzonite | RASS | 604 days |
O | Triple Sugar Fe Agar | Limestone | AIFeMn | 604 days |
Media Type | Fe Carbonate | AI Media | Mn Carbonate | Nutrient Broth | TSI Agar | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rock Type | Basalt | Limestone | Monzonite | Basalt | Basalt | Limestone | Monzonite | Basalt | Limestone | Monzonite | Basalt | Limestone | Monzonite |
Surface corrosion | Abundant | Prevalent | Abundant | Abundant | Abundant | Prevalent | Prevalent | Prevalent | Prevalent | Prevalent | Abundant | Abundant | Abundant |
Etch pits observed? | none noted | yes | yes | none noted | yes | none noted | yes | yes | none noted | yes | yes | yes | yes |
Specific minerals or other corrosion features | corroded olivine surfaces | corroded calcite (weathered pinnacles, etch pits) | corroded Na-feldspar, sometimes associated with biofilm. | corroded olivine and some feldspar, pyroxene, and Fe-Ti oxides | corroded feldspars | corroded calcite (weathered pinnacles) | parallel etch pits | conchoidal fracturing; isolated etch pits with uniform geometry and size | corroded calcite | corrosion of quartz and feldspars. Feldspar corrosion sometimes associated w/ filaments | surface breakdown, surface etching and surface pits | corroded calcite (pinnacle weathering, sometimes associated w/ etch pits and biofilms) | corroded feldspars |
Secondary minerals 1 | silica crust (containing Si, Ca, Mg, and O); Fe-rich precipitates | illite | apatite crystals, associated with biofilm | apatite crystals (Glut_HMDS), sometimes fibrous or straw-like; iron oxides | none noted | none noted | none noted | ilmenite associated with biofilm; apatite (in Glut_CPD) | apatite (Glut_HMD); Possible calcite (Glut_HMDS); clays | clays; possible carbon-enriched albite | none noted | none noted | none noted |
Biofilm Abundance | Common | Moderate | Moderate | Moderate | Minimal in air-dried sample; moderate in Glut_CPD and Phos_CPD | Minimal in air-dried; moderate in Glut_CPD; common in Phos_CPD | Abundant | Moderate | Common; thick biofilm covered most surfaces. | Moderate | Moderate | Minimal, only in air-dried | Abundant |
Biofilm Morphotypes 2 | A, B, C, D, E, F, G, I, J, L | A, B, D, E, G | A, C, D, E, I, J | A, B, C, D, E, F, G, H, I, L | A, B, E, F, G, H, I, J, K, L | B, D, E, I | A, B, D, E, G, H, I | D, E | A, B, C, D, E, G, H | A, D, E | A, B, C, E, H, I, J, L | E | A, B, D, E, G, H, I, J, L |
Cell Types Present | cocci and bacilli | coccobacilli and cocci | cocci, diplococci, streptococci, coccobacilli and bacilli | cocci w/ dimpled appearance; coccobacilli; bacilli | cocci; coccobacilli (very prolific in some); some bacilli and streptococci | flattened cocci and coocobacilli (none in air dried sample) | coccobacilli most abundant; some bacilli and cocci | cocci, coocbacilli, bacilla; very abundant in Phos_HMDS sample | cocci; none noted in Phos_CPD sample | cocci, coccobacilli, bacilli | cocci | cocci | cocci, coccobacilli |
Filaments Present | Yes, except in air-dried | Yes | Yes | Yes | Yes | Yes, except in air-dried | none noted | Yes, only in air dried | Yes, only in Phos_HMDS | Yes | Yes | Yes, only in air dried | Yes, only in Phos_CPD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelly, H.; Spilde, M.N.; Jones, D.S.; Boston, P.J. Insights into the Geomicrobiology of Biovermiculations from Rock Billet Incubation Experiments. Life 2021, 11, 59. https://doi.org/10.3390/life11010059
Kelly H, Spilde MN, Jones DS, Boston PJ. Insights into the Geomicrobiology of Biovermiculations from Rock Billet Incubation Experiments. Life. 2021; 11(1):59. https://doi.org/10.3390/life11010059
Chicago/Turabian StyleKelly, Hilary, Michael N. Spilde, Daniel S. Jones, and Penelope J. Boston. 2021. "Insights into the Geomicrobiology of Biovermiculations from Rock Billet Incubation Experiments" Life 11, no. 1: 59. https://doi.org/10.3390/life11010059
APA StyleKelly, H., Spilde, M. N., Jones, D. S., & Boston, P. J. (2021). Insights into the Geomicrobiology of Biovermiculations from Rock Billet Incubation Experiments. Life, 11(1), 59. https://doi.org/10.3390/life11010059