Tailor-Made Hand Exoskeletons at the University of Florence: From Kinematics to Mechatronic Design †
Abstract
:1. Introduction
Overall Framework
2. Kinematic Architecture
3. First Prototype: Kinematic Validation
3.1. Mechanical Design
3.2. Actuation System and Control Strategy
3.3. Testing
- The patient pointed out that being forced by the exoskeleton to move the fingers only on the flex/extension plane (this prototype did not allow for the ab/adduction movement of the MCP joint) resulted in an extremely annoying feeling.
- As well as the comfort, also the intuitiveness of control was very low: the patient had, in fact, to use both hand to move just one because of the buttons-driven actuation system.
- The lack of a proper position feedback over the flex/extension angle of the finger did not allow for a safe automatic control over the Range of Motion (ROM).
- The solution provided by the exploited optimization algorithm was, by the nature of the algorithm itself, strongly dependable on the choice of the initial state, which was arbitrarily made accordingly to the imposed geometric constraints. This process hence resulted in being low-adaptable to different hand sizes because of the necessity of proper setting the initial state of the algorithm every time, and it also offered no guarantees of finding a real optimum solution.
4. Second Prototype: Ergonomics and Adaptability Improvements
4.1. Mechanical Design
4.2. Actuation System and Control Strategy
Testing
5. Third Prototype: Intuitive Control
5.1. Mechanical Design
5.2. Actuation System and Control Strategy
5.3. Testing
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Heller, A.; Wade, D.; Wood, V.; Sunderland, A.; Hewer, R.; Ward, E. Arm function after stroke: Measurement and recovery over the first three months. J. Neurol. Neurosurg. Psychiatry 1987, 131, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Wade, D.; Langton-Hewer, R.; Wood, V.; Skilbeck, C.; Ismail, H. The hemiplegic arm after stroke: Measurement and recovery. J. Neurol. Neurosurg. Psychiatry 1983, 46, 521–524. [Google Scholar] [CrossRef]
- Sunderland, A.; Tinson, D.; Bradley, L.; Hewer, R. Arm function after stroke. An evaluation of grip strength as a measure of recovery and a prognostic indicator. J. Neurol. Neurosurg. Psychiatry 1989, 52, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, H.; Jørgensen, H.; Raaschou, H.; Olsen, T. Recovery of upper extremity function in stroke patients: The Copenhagen Stroke Study. Arch. Phys. Med. Rehabil. 1994, 75, 394–398. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Disability Action Plan 2014–2021: Better Health for All People with Disability; Technical Report; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Bruno, S.; Oussama, K. Springer Handbook of Robotics; Springer: Berlin, Germany, 2016. [Google Scholar]
- Heo, P.; Gu, G.M.; Lee, S. Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int. J. Precis. Eng. Manuf. 2012, 13, 807–824. [Google Scholar] [CrossRef]
- Troncossi, M.; Mozaffari-Foumashi, M.; Parenti-Castelli, V. An Original Classification of Rehabilitation Hand Exoskeletons. J. Robot. Mech. Eng. Res. 2016, 1, 17–29. [Google Scholar] [CrossRef]
- Bos, R.A.; Haarman, C.J.; Stortelder, T.; Nizamis, K.; Herder, J.L.; Stienen, A.H.; Plettenburg, D.H. A structured overview of trends and technologies used in dynamic hand orthoses. J. NeuroEng. Rehabil. 2016, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Harwin, W.S.; Patton, J.L.; Edgerton, V.R. Challenges and opportunities for robot-mediated neurorehabilitation. Proc. IEEE 2006, 94, 1717–1726. [Google Scholar] [CrossRef]
- Rosenstein, L.; Ridgel, A.L.; Thota, A.; Samame, B.; Alberts, J.L. Effects of combined robotic therapy and repetitive-task practice on upper-extremity function in a patient with chronic stroke. Am. J. Occup. Ther. 2008, 1, 28–35. [Google Scholar] [CrossRef]
- Martinez, L.; Olaloye, O.; Talarico, M.; Shah, S.; Arends, R.; BuSha, B. A power-assisted exoskeleton optimized for pinching and grasping motions. In Proceedings of the 2010 Northeast Bioengineering Conference, New York, NY, USA, 26–28 March 2010; pp. 1–2. [Google Scholar] [CrossRef]
- Moromugi, S.; Koujina, Y.; Ariki, S.; Okamoto, A.; Tanaka, T.; Feng, M.Q.; Ishimatsu, T. Muscle stiffness sensor to control an assistance device for the disabled. Artif. Life Robot. 2004, 8, 42–45. [Google Scholar] [CrossRef]
- Iqbal, J.; Tsagarakis, N.; Fiorilla, A.; Caldwell, D. A portable rehabilitation device for the hand. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 1–4 September 2010; pp. 3694–3697. [Google Scholar] [CrossRef]
- Jones, C.; Wang, F.; Osswald, C.; Kang, X.; Sarkar, N.; Kamper, D. Control and kinematic performance analysis of an Actuated Finger Exoskeleton for hand rehabilitation following stroke. In Proceedings of the International Conference on Biomedical Robotics and Biomechatronics (BioRob), Tokyo, Japan, 26–29 September 2010; pp. 282–287. [Google Scholar] [CrossRef]
- Li, J.; Zheng, R.; Zhang, Y.; Yao, J. iHandRehab: An interactive hand exoskeleton for active and passive rehabilitation. In Proceedings of the International Conference on Rehabilitation Robotics (ICORR), Tokyo, Japan, 26–29 September 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Mikami, Y.; Watanabe, K.; Sankai, Y. Five-fingered assistive hand with mechanical compliance of human finger. In Proceedings of the International Conference on Robotics and Automation (ICRA), Pasadena, CA, USA, 19–23 May 2008; pp. 718–724. [Google Scholar] [CrossRef]
- Schabowsky, C.; Godfrey, S.; Holley, R.; Lum, P. Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot. J. Neuroeng. Rehabil. 2010. [Google Scholar] [CrossRef] [PubMed]
- Wege, A.; Kondak, K.; Hommel, G. Mechanical design and motion control of a hand exoskeleton for rehabilitation. In Proceedings of the International Conference on Mechatronics and Automation, Niagara Falls, ON, Canada, 20 July–1 August 2005; pp. 155–519. [Google Scholar] [CrossRef]
- Chiri, A.; Vitiello, N.; Giovacchini, F.; Roccella, S.; Vecchi, F.; Carrozza, M. Mechatronic Design and Characterization of the Index Finger Module of a Hand Exoskeleton for Post-Stroke Rehabilitation. IEEE/ASME Trans. Mech. 2012, 17, 884–894. [Google Scholar] [CrossRef]
- Wege, A.; Hommel, G. Development and control of a hand exoskeleton for rehabilitation of hand injuries. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS 2005), Edmonton, AB, Canada, 2–6 August 2005; pp. 3046–3051. [Google Scholar] [CrossRef]
- Takahashi, C.; Der-Yeghiaian, L.; Le, V.; Motiwala, R.; Cramer, S. Robot-based hand motor therapy after stroke. Brain 2008, 131, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Mulas, M.; Folgheraiter, M.; Gini, G. An EMG-controlled exoskeleton for hand rehabilitation. In Proceedings of the International Conference on Rehabilitation Robotics, Bellevue, WA, USA, 20–24 June 2013; pp. 371–374. [Google Scholar] [CrossRef]
- Rotella, M.F.; Reuther, K.; Hofmann, C.; Hage, E.; BuSha, B. An orthotic hand-assistive exoskeleton for actuated pinch and grasp. In Proceedings of the Northeast Bioengineering Conference, Cambridge, MA, USA, 3–5 April 2009; pp. 1–2. [Google Scholar] [CrossRef]
- Brokaw, E.; Black, I.; Holley, R.; Lum, P. Hand Spring Operated Movement Enhancer (HandSOME): A Portable, Passive Hand Exoskeleton for Stroke Rehabilitation. Trans. Neural Syst. Rehabil. Eng. 2011, 19, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Stilli, A.; Cremoni, A.; Bianchi, M.; Ridolfi, A.; Gerii, F.; Vannetti, F.; Wurdemann, H.A.; Allotta, B.; Althoefer, K. AirExGlove—A novel pneumatic exoskeleton glove for adaptive hand rehabilitation in post-stroke patients. In Proceedings of the 2018 IEEE International Conference on Soft Robotics, Livorno, Italy, 24–28 April 2018; pp. 579–584. [Google Scholar] [CrossRef]
- Yap, H.; Nasrallah, F.; Lim, J.; Low, F.; Goh, J.; Yeow, R. MRC-glove: A fMRI compatible soft robotic glove for hand rehabilitation application. In Proceedings of the International Conference on Rehabilitation Robotics, Singapore, 11–14 August 2015; pp. 735–740. [Google Scholar] [CrossRef]
- Polygerinos, P.; Wang, Z.; Galloway, K.; Wood, R.; Walsh, C.J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 2015, 73, 135–143. [Google Scholar] [CrossRef]
- Deimel, R.; Brock, O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 2016, 35, 161–185. [Google Scholar] [CrossRef]
- Delph, M.A.; Fischer, S.; Gauthier, P.; Luna, C.; Clancy, E.; Fischer, G. A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation. In Proceedings of the International Conference on Rehabilitation Robotics, Bellevue, WA, USA, 20–24 June 2013. [Google Scholar] [CrossRef]
- Tong, K.; Ho, S.; Pang, P.; Hu, X.; Tam, W.; Fung, K.; Wei, X.; Chen, P.; Chen, M. An intention driven hand functions task training robotic system. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010. [Google Scholar]
- Iqbal, J.; Khelifa, B. Stroke rehabilitation using exoskeleton-based robotic exercisers: Mini Review. Biomed. Res. 2015, 26, 197–201. [Google Scholar]
- Lucas, L.; DiCicco, M.; Matsuoka, Y. An EMG-Controlled Hand Exoskeleton for Natural Pinching. J. Robot. Mech. 2004, 16, 1–7. [Google Scholar] [CrossRef]
- Conti, R.; Meli, E.; Ridolfi, A.; Bianchi, M.; Governi, L.; Volpe, Y.; Allotta, B. Kinematic synthesis and testing of a new portable hand exoskeleton. Meccanica 2017. [Google Scholar] [CrossRef]
- Allotta, B.; Conti, R.; Governi, L.; Meli, E.; Ridolfi, A.; Volpe, Y. Development and experimental testing of a portable hand exoskeleton. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015; pp. 5339–5344. [Google Scholar] [CrossRef]
- Byrd, R.H.; Gilbert, J.C.; Nocedal, J. A trust region method based on interior point techniques for nonlinear programming. Math. Program. 2000, 89, 149–185. [Google Scholar] [CrossRef]
- Bianchi, M.; Fanelli, F.; Giordani, L.; Ridolfi, A.; Vannetti, F.; Allotta, B. An automatic scaling procedure for a wearable and portable hand exoskeleton. In Proceedings of the 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow, Bologna, Italy, 7–9 September 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Lobo-Prat, J.; Kooren, P.N.; Stienen, A.H.; Herder, J.L.; Koopman, B.F.; Veltink, P.H. Non-invasive control interfaces forintention detection in active movement-assistive devices. J. NeuroEng. Rehabil. 2014, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Adewuyi, A.A.; Hargrove, L.J.; Kuiken, T.A. Evaluating EMG Feature and Classifier Selection for Application to Partial-Hand Prosthesis Control. Front. Neurorobot. 2016, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Secciani, N.; Bianchi, M.; Ridolfi, A.; Vannetti, F.; Allotta, B. Assessment of a Hand Exoskeleton Control Strategy Based on User’s Intentions Classification Starting from Surface EMG Signals. In Wearable Robotics: Challenges and Trends; Carrozza, M.C., Micera, S., Pons, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 40–444. [Google Scholar]
- Secciani, N.; Bianchi, M.; Meli, E.; Volpe, Y.; Ridolfi, A. A novel application of a surface ElectroMyoGraphy-based control strategy for a hand exoskeleton system: A single-case study. Int. J. Adv. Robot. Syst. 2019, 16. [Google Scholar] [CrossRef]
- Bianchi, M.; Buonamici, F.; Furferi, R.; Vanni, N. Design and Optimization of a Flexion/Extension Mechanism for a Hand Exoskeleton System. In Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC, USA, 21–24 August 2016. [Google Scholar]
- Bianchi, M.; Cempini, M.; Conti, R.; Meli, E.; Ridolfi, A.; Vitiello, N.; Allotta, B. Design of a Series Elastic Transmission for hand exoskeletons. Mechatronics 2018, 51, 8–18. [Google Scholar] [CrossRef]
- Santello, M.; Flanders, M.; Soechting, J. Postural hand synergies for tool use. J. Neurosci. 1998, 18, 10105–10115. [Google Scholar] [CrossRef] [PubMed]
- Santello, M.; Bianchi, M.; Gabiccini, M.; Ricciardi, E.; Salvietti, G.; Prattichizzo, D.; Ernst, M.; Moscatelli, A.; Jörntell, H.; Kappers, A.M.; et al. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys. Life Rev. 2016, 17, 1–23. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Prototypes of the presented exoskeletons are available from the authors. |
Dimensions [mm] | Error [mm] | Error/Finger Extension [%] | ||||
---|---|---|---|---|---|---|
Length × Width | Maximum | Average | Std Dev | Maximum | Average | Std Dev |
200 × 94 | 4.96 | 2.66 | 1.18 | 4.5 | 2.4 | 1.1 |
165 × 82 | 3.72 | 2.29 | 1.13 | 4.2 | 2.6 | 1.3 |
191 × 78 | 4.82 | 3.15 | 1.30 | 4.7 | 3.1 | 1.3 |
192 × 84 | 5.59 | 3.68 | 1.70 | 5.5 | 3.6 | 1.7 |
189 × 95 | 5.92 | 3.83 | 1.63 | 5.9 | 3.8 | 1.6 |
192 × 91 | 3.05 | 2.05 | 0.81 | 3.0 | 2.0 | 0.8 |
197 × 88 | 3.45 | 2.10 | 1.21 | 3.3 | 2.0 | 1.1 |
193 × 89 | 6.30 | 4.12 | 1.40 | 6.3 | 4.1 | 1.4 |
187 × 81 | 0.90 | 0.53 | 0.31 | 0.9 | 0.5 | 0.3 |
150 × 75 | 4.76 | 2.92 | 1.42 | 5.9 | 3.6 | 1.7 |
193 × 80 | 4.99 | 3.08 | 1.48 | 4.9 | 3.0 | 1.4 |
220 × 90 | 8.83 | 6.80 | 1.79 | 7.6 | 5.9 | 1.5 |
195 × 92 | 5.57 | 3.96 | 1.24 | 5.3 | 3.8 | 1.2 |
Performance Criteria | Prototype | ||
---|---|---|---|
1 | 2 | 3 | |
Number of DOFs | 1 | 1 | 1 |
Number of linkages | 6 | 5 | 4 |
Trigger strategy | Buttons | Buttons | EMGbased |
Autoalignment | ✕ | ✓ | ✓ |
Comfort for the user | ✕ | ✓ | ✓ |
Adaptability to the hand | ✕ | ✓ | ✓ |
Safe use | ✕ | ✓ | ✓ |
Userfriendly activation | ✕ | ✕ | ✓ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Secciani, N.; Bianchi, M.; Ridolfi, A.; Vannetti, F.; Volpe, Y.; Governi, L.; Bianchini, M.; Allotta, B. Tailor-Made Hand Exoskeletons at the University of Florence: From Kinematics to Mechatronic Design. Machines 2019, 7, 22. https://doi.org/10.3390/machines7020022
Secciani N, Bianchi M, Ridolfi A, Vannetti F, Volpe Y, Governi L, Bianchini M, Allotta B. Tailor-Made Hand Exoskeletons at the University of Florence: From Kinematics to Mechatronic Design. Machines. 2019; 7(2):22. https://doi.org/10.3390/machines7020022
Chicago/Turabian StyleSecciani, Nicola, Matteo Bianchi, Alessandro Ridolfi, Federica Vannetti, Yary Volpe, Lapo Governi, Massimo Bianchini, and Benedetto Allotta. 2019. "Tailor-Made Hand Exoskeletons at the University of Florence: From Kinematics to Mechatronic Design" Machines 7, no. 2: 22. https://doi.org/10.3390/machines7020022
APA StyleSecciani, N., Bianchi, M., Ridolfi, A., Vannetti, F., Volpe, Y., Governi, L., Bianchini, M., & Allotta, B. (2019). Tailor-Made Hand Exoskeletons at the University of Florence: From Kinematics to Mechatronic Design. Machines, 7(2), 22. https://doi.org/10.3390/machines7020022