# The Modelling, Simulation and FPGA-Based Implementation for Stepper Motor Wide Range Speed Closed-Loop Drive System Design

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Experimental Setup and Modelling of the Developed Drive System

#### 2.1. The Experimental Setup

#### 2.2. The Modelling of the Stepper Motor

#### 2.3. The Realization of the Drive System by FPGA

## 3. The Functional Simulation and Discussions

^{2}. The parameters of the controller for the simulated system are set as those shown in Table 2. Furthermore, for the speed command of 314 rad/s, the field weaken control is activated once the speed increases passed 100 rad/s, and a negative d-axis current command is added to let the system enter that region.

## 4. The Experimental Results and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Lu, W.; Wang, Q.; Ji, K.; Dong, H.; Lin, J.; Qian, J. Research on Closed-loop Drive System of Two-phase Hybrid Step Motor Based on SVPWM. In Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, 17–20 October 2016. [Google Scholar]
- Crnoˇsija, P.; Kuzmanovic, B.; Ajdukovic, S. Microcomputer Implementation of Optimal Algorithms for Closed-Loop Control of Hybrid Stepper Motor Drives. IEEE Trans. Ind. Electron.
**2000**, 47, 1319–1325. [Google Scholar] - Le, K.M.; van Hoang, H.; Jeon, J.W. An Advanced Closed-Loop Control to Improve the Performance of Hybrid Stepper Motors. IEEE Trans. Power Electron.
**2017**, 32, 7244–7255. [Google Scholar] [CrossRef] - Chaurasiya Rohit, B.; Mukesh, D.; Patil, D.S.; Kadam, A. FPGA Implementation of SVPWM Control Technique for Three Phase Induction Motor Drive Using Fixed Point Realization. In Proceedings of the International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA), Mumbai, India, 4–5 April 2014; pp. 93–98. [Google Scholar]
- Kung, Y.-S.; Tsai, M.-H. FPGA-Based Speed Control IC for PMSM Drive with Adaptive Fuzzy Control. IEEE Trans. Power Electron.
**2007**, 22, 2476–2486. [Google Scholar] [CrossRef] - Quynh, N.V.; Kung, Y.-S. FPGA-Realization of Fuzzy Speed Controller for PMSM Drives without Position Sensor. ICCAIS
**2013**, 278–282. [Google Scholar] [CrossRef] - Kenneth, W.H.; Tsui, N.C. Cheung, Novel Modeling and Damping Technique for Hybrid Stepper Motor. IEEE Trans. Ind. Electron.
**2009**, 56, 202–211. [Google Scholar] - Kocur, M.; Kozak, S.; Dvorscak, B. Design and Implementation of FPGA—Digital Based PID Controller. In Proceedings of the 15th International Carpathian Control Conference (ICCC), Ostrava, Czech Republic, 28–30 May 2014; pp. 233–236. [Google Scholar]
- Siwakoti, Y.P.; Town, G.E. Design of FPGA-Controlled Power Electronics and Drives Using MATLAB Simulink. In Proceedings of the IEEE/ECCE Asia, Melbourne, Australia, 3–6 June 2013; pp. 571–577. [Google Scholar]
- Lai, C.-K.; Tsao, Y.-T.; Tsai, C.-C. Modeling, Analysis, and Realization of Permanent Magnet Synchronous Motor Current Vector Control by MATLAB/Simulink and FPGA. Machines
**2017**, 5, 26. [Google Scholar] [CrossRef] - Stumpf, A.; Elton, D.; Devlin, J.; Lovatt, H. Benefits of an FPGA based SRM controller. In Proceedings of the IEEE 9th Conference on Industrial Electronics and Applications (ICIEA), Hangzhou, China, 9–11 June 2014; pp. 12–17. [Google Scholar]
- Horvat, R.; Jezernik, K.; Čurkovič, M. An Event-Driven Approach to the Current Control of a BLDC Motor Using FPGA. IEEE Trans. Ind. Electron.
**2014**, 61, 3719–3726. [Google Scholar] [CrossRef] - Lai, C.-K.; Chien, W.-N.; Tsai, S.-L.; Tsao, Y.-T. The Modelling, Simulation and Hardware Implementation for FPGA-based Stepping Motor Motion Drive. Int. J. Comput. Consum. Control
**2016**, 5, 33–47. [Google Scholar]

**Figure 1.**The setup for experiment. (

**a**) The field programmable gate array (FPGA) board and power module; (

**b**) the experimental platform.

**Figure 2.**The block diagram of the stepper motor drive system. DAC—digital to analog converter; ADC—analog to digital converter.

**Figure 6.**The block diagram for the PI controller. (

**a**) The PI structure; (

**b**) the integral control part.

Name | Unit | Sign | Integer Part | Fractional Part | Remark |
---|---|---|---|---|---|

${K}_{p}$ | 1 | 16 | 15 | Proportional gain | |

${K}_{i}$ | 1 | 16 | 15 | Integral gain | |

${\theta}_{m}$ | # pulse | 1 | 31 | 0 | Position |

${\omega}_{m}$ | rad/sec | 1 | 16 | 15 | Velocity |

${i}_{d}$ | A | 1 | 16 | 15 | d-axis current |

${i}_{q}$ | A | 1 | 16 | 15 | q-axis current |

${v}_{d}$ | V | 1 | 16 | 15 | d-axis voltage |

${v}_{q}$ | V | 1 | 16 | 15 | q-axis voltage |

$\mathrm{sin}(\theta )$ | 1 | 3 | 28 | ||

$\mathrm{cos}(\theta )$ | 1 | 3 | 28 |

Type | ${\mathit{K}}_{\mathit{p}}$ | ${\mathit{K}}_{\mathit{i}}$ |
---|---|---|

Position control loop | 0.1 (rad/s/p) | 0 |

Speed control loop | 0.1 (A/rad/s) | 0.03 (rad/p·s) |

d-axis control loop | 16 (V/A) | 0.01 (V/A·s) |

q-axis control loop | 16 (V/A) | 0.01 (V/A·s) |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lai, C.-K.; Ciou, J.-S.; Tsai, C.-C. The Modelling, Simulation and FPGA-Based Implementation for Stepper Motor Wide Range Speed Closed-Loop Drive System Design. *Machines* **2018**, *6*, 56.
https://doi.org/10.3390/machines6040056

**AMA Style**

Lai C-K, Ciou J-S, Tsai C-C. The Modelling, Simulation and FPGA-Based Implementation for Stepper Motor Wide Range Speed Closed-Loop Drive System Design. *Machines*. 2018; 6(4):56.
https://doi.org/10.3390/machines6040056

**Chicago/Turabian Style**

Lai, Chiu-Keng, Jhang-Shan Ciou, and Chia-Che Tsai. 2018. "The Modelling, Simulation and FPGA-Based Implementation for Stepper Motor Wide Range Speed Closed-Loop Drive System Design" *Machines* 6, no. 4: 56.
https://doi.org/10.3390/machines6040056