Discrete Element Modelling Method and Parameter Calibration of Mussel Based on Bonding V2 Model
Abstract
1. Introduction
2. Overall Structure and Working Principle
2.1. Overall Structure
2.2. Working Principle
3. Discrete Element EDEM Simulation Parameter Calibration
3.1. Selection of the Contact Model
- Hertz—Mindlin (no slip) model:
- 2.
- Bonding V2 model:
3.2. Parameter Determination Test
3.2.1. Uniaxial Compression Test
3.2.2. Mussel Byssus Bonding Characteristic Test
3.3. Uniaxial Compression Simulation Test
3.3.1. Uniaxial Compression Simulation Test Process
3.3.2. Simulation Test Process of Uniaxial Compression
3.4. Parameter Calibration of Bonding V2 Model
3.4.1. Plackett–Burman Design
3.4.2. Steepest Ascent Test
3.4.3. Box–Behnken Test
3.5. Model Limitations
3.5.1. Model Simplification
3.5.2. Model Serviceability
4. Simulation and Test Verification of Unloading Seedlings
4.1. Test Conditions
4.2. Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, W.; Wang, Z.; Zhang, S.; Lin, J.; Tan, Y.; Li, X.; Chen, J. Characteristics of fish assemblage in a mussel farming area in Gouqi Island waters. J. Fish. China 2024, 48, 52–67. [Google Scholar]
- Luo, H.; Tao, L.; Wu, Y.; Zhang, X.; Yang, D. Thoughts on sustainable development of mussel industry in Shengsi County, Zhejiang Province. China Fish. 2016, 12, 29–33. [Google Scholar]
- Murchie, L.W.; Cruz, R.M.; Kerry, J.P.; Linton, M.; Patterson, M.F.; Smiddy, M.; Kelly, A.L. High pressure processing of shellfish: A review of microbiological and other quality aspects. Innov. Food Sci. Emerg. Technol. 2005, 6, 257–270. [Google Scholar] [CrossRef]
- Li, X.; Wang, T. Safety monitoring of bivalves in Europe. China Fish. 2005, 4, 15–17. [Google Scholar]
- Alfaro, A.C.; Jeffs, A.G. Variability in mussel settlement on suspended ropes placed at Ahipara Bay, Northland, New Zealand. Aquaculture 2003, 216, 115–126. [Google Scholar] [CrossRef]
- Luo, Z.; Zhou, Z.; Fu, Z.; Jia, S. Design and Research of Mussel Harvesting Device. China Water Transp. 2018, 18, 109–110. [Google Scholar]
- Cheng, H.; Yuan, Y.; Li, D. Design and Research of Double-station Chain Mussel Unloading Equipment. Mech. Eng. 2019, 12, 62–65. [Google Scholar]
- Cheng, H.; Yuan, Y.; Xie, F.; Li, D. Design of Screw-Driving Mussel Breeding Rope Removal Equipment. Light Ind. Mach. 2021, 39, 23–28+34. [Google Scholar]
- Jiang, C. Major problems and solutions of shellfish processing in China. Fish. Inf. Strategy 2012, 27, 87–93. [Google Scholar] [CrossRef]
- Liu, C. Structure Optimization of Vertical Iron Roller Rice Mill Based on Discrete Element EDEM. Master’s Thesis, Wuhan Polytechnic University, Wuhan, China, 2024. [Google Scholar]
- Shi, J.; Shan, Z.; Yang, H. Research on the macro- and meso-mechanical properties of frozen sand mold based on Hertz-Mindlin with Bonding model. Particuology 2024, 88, 176–191. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, L.; Hu, C.; Li, Z.; Tang, J.; Mao, K.; Wang, X. Calibration of wet sand and gravel particles based on JKR contact model. Powder Technol. 2022, 397, 117005. [Google Scholar] [CrossRef]
- Li, S.; Diao, P.; Miao, H.; Zhao, Y.; Li, X.; Zhao, H. Modeling the fracture process of wheat straw using a discrete element approach. Powder Technol. 2024, 439, 119726. [Google Scholar] [CrossRef]
- Li, H.; Meng, Y.; Qi, X. Discrete Element Modelling Method and Parameter Calibration of Garlic Species Based on Bonding V2 Model. Trans. Chin. Soc. Agric. Mach. 2025, 56, 150–157+169. [Google Scholar]
- Yuan, Y.; Xie, F.; Fan, Q. Pressure Bearing Properties and Crack Path Orientation of Mussel Shell. Agric. Eng. 2022, 12, 63–67. [Google Scholar] [CrossRef]
- Xu, W.; Xie, Y.; Qian, J. Adhesive Performance of 3D Printed Biomimetic Mussel Byssal Structures. Appl. Math. Mech. 2024, 45, 261–272. [Google Scholar]
- Knysh, A.; Tsukrov, I.; Chambers, M.; Swift, M.R.; Sullivan, C.; Drach, A. Numerical modeling of submerged mussel longlines with protective sleeves. Aquac. Eng. 2020, 88, 102027. [Google Scholar] [CrossRef]
- Zhang, P.; Li, F.; Wang, F. Optimization and test of ginger-shaking and harvesting device based on EDEM software. Comput. Electron. Agric. 2023, 213, 108257. [Google Scholar] [CrossRef]
- Yin, Q.; Xia, X.; Liu, X.; Zhang, Y.; Song, S.; Li, H. Structural optimization design of spiral-driven grain detection robot based on EDEM-RecurDyn. Smart Agric. Technol. 2025, 101182. [Google Scholar] [CrossRef]
- Li, H.; Zhang, G.; Liu, F.; Li, X.; Wang, Y.; Mu, G. Design and Testing of Mudflat Shellfish Vibrating Harvester Based on DEM-MBD Simulation. Trans. Chin. Soc. Agric. Mach. 2024, 55, 361–370. [Google Scholar]
- Xie, F. Study on Key Technology of Mussel High-Pressure Water Jet Cleaning. Master’s Thesis, Zhejiang Ocean University, Zhoushan, China, 2024. [Google Scholar]
- Sunny, R.C.; Fredriksson, D.W.; Tsukrov, I.; Zhu, L.; Bowden, M.; Chambers, M.; Silkes, B. Design considerations for a continuous mussel farm in New England Offshore waters. Part II: Using validated numerical models to estimate the probability of failure. Aquac. Eng. 2025, 111, 102575. [Google Scholar] [CrossRef]
- Huang, W. Design and Experimental Study of Centrifugal Shellfish Seeding Device. Master’s Thesis, Dalian Ocean University, Dalian, China, 2022. [Google Scholar]
- Yang, W. Investigation on the Mechanical Properties of Saxidomus Purpuratus Shells. Doctor’s Thesis, Northeastern University, Boston, MA, USA, 2012. [Google Scholar]
- Kan, Y. Investigation on Adhesion Mechanisms of Mussel Foot Proteins Using the Surface Forces Apparatus. Doctor’s Thesis, Southest University, Dhaka, Bangladesh, 2016. [Google Scholar]
- Zeng, D.; Yang, H.; Zeng, Z.; Liu, H.; Du, Z. Parameter Sensitivity Study of Dynamic Response of Simply Supported Girder Bridge Under Main Aftershock. Railw. Eng. 2025, 65, 75–82. [Google Scholar]
- Du, G.; Zhang, H.; Yu, H.; Hou, P.; He, J.; Cao, S.; Wang, G.; Ma, L. Study on Automatic Tracking System of Microwave Deicing Device for Railway Contact Wire. IEEE Trans. Instrum. Meas. 2024, 73, 3527611. [Google Scholar] [CrossRef]
- Jia, X.; Zheng, X.; Chen, L.; Liu, C.; Song, J.; Zhu, C.; Xu, J.; Hao, S. Discrete element flexible modeling and experimental verification of rice blanket seedling root blanket. Comput. Electron. Agric. 2025, 233, 110155. [Google Scholar] [CrossRef]
- Cheng, H. Development of a New Type of Thick-Shell Mussel Scrubbing Equipment. Master’s Thesis, Zhejiang Ocean University, Zhoushan, China, 2022. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Z.; Huang, H.; Huang, G.; Zeng, Z.; Yang, B. Design and Test of Mower Cutting System Parameters Based on EDEM. China South. Agric. Mach. 2025, 56, 7–13. [Google Scholar]














| Parameter | Value |
|---|---|
| length × width × height | 2800 mm × 1115 mm × 1500 mm |
| Number of jobs/cluster | 1 |
| Operating speed/t·h−1 | 8–10 |
| matching power/kW | 7.5 |
| Serial Number | Pulling Force | Maximum | Serial Number | Pulling Force | Maximum | Serial Number | Pulling Force | Maximum |
|---|---|---|---|---|---|---|---|---|
| 1-1 | 56.73 | 58.74 | 2-1 | 78.89 | 78.89 | 3-1 | 215.60 | 215.60 |
| 1-2 | 49.00 | 2-2 | 73.50 | 3-2 | 214.13 | |||
| 1-3 | 27.44 | 2-3 | 69.58 | 3-3 | 179.83 | |||
| 1-4 | 29.89 | 2-4 | 57.82 | 3-4 | 160.23 | |||
| 1-5 | 24.99 | 2-5 | 55.87 | 3-5 | 142.59 | |||
| 1-6 | 52.92 | 2-6 | 53.90 | 3-6 | 101.43 | |||
| 1-7 | 46.55 | 2-7 | 53.41 | 3-7 | 98.98 | |||
| 1-8 | 35.62 | 2-8 | 50.74 | 3-8 | 98.00 | |||
| 1-9 | 58.74 | 2-9 | 46.06 | 3-9 | 95.55 | |||
| 1-10 | 46.51 | 2-10 | 38.22 | 3-10 | 63.70 |
| Material | Parameters | Value |
|---|---|---|
| Mussel shell | Poisson’s ratio | 0.394 |
| Density (kg/m3) | 1580 | |
| Shear modulus (Pa) | 5.56 × 107 | |
| Seeding rope | Poisson’s ratio | 0.33 |
| Density (kg/m3) | 930 | |
| Shear modulus (Pa) | 2.9 × 109 | |
| Equipment | Poisson’s ratio | 0.29 |
| Density (kg/m3) | 7930 | |
| Shear modulus (Pa) | 1.93 × 1011 | |
| Mussel-Mussel | Restitution coefficient | 0.32 |
| Static friction coefficient | 1.25 | |
| Rolling friction coefficient | 0.33 | |
| Mussel-Seeding rope | Restitution coefficient | 0.1 |
| Static friction coefficient | 0.1 | |
| Rolling friction coefficient | 0.3 | |
| The mussel string-Equipment | Restitution coefficient | 0.38 |
| Static friction coefficient | 0.23 | |
| Rolling friction coefficient | 0.34 |
| Factors | Coding | |
|---|---|---|
| −1 | 1 | |
| Normal stiffness per unit area X1/N·m−3 | 2.00 × 1011 | 2.80 × 1011 |
| Tangential stiffness per unit area X2/N·m−3 | 3.20 × 108 | 4.40 × 108 |
| Critical normal stress X3/Pa | 2.80 × 106 | 3.50 × 106 |
| Critical tangential stress X4/Pa | 1.90 × 107 | 2.30 × 107 |
| Radius of contact X5/mm | 1.60 | 2.40 |
| Serial Number | Factors | Response Value | |||||
|---|---|---|---|---|---|---|---|
| X1/(N·m−3) | X2/(N·m−3) | X3/Pa | X4/Pa | X5/mm | Y1/mm | Y2/N | |
| 1 | 2.80 × 1011 | 3.20 × 108 | 3.50 × 106 | 2.30 × 107 | 1.60 | 1.975 | 350.706 |
| 2 | 2.80 × 1011 | 3.20 × 108 | 2.80 × 106 | 1.90 × 107 | 2.40 | 2.605 | 804.722 |
| 3 | 2.00 × 1011 | 3.20 × 108 | 2.80 × 106 | 2.30 × 107 | 1.60 | 1.775 | 293.962 |
| 4 | 2.80 × 1011 | 4.40 × 108 | 3.50 × 106 | 1.90 × 107 | 1.60 | 1.740 | 372.789 |
| 5 | 2.80 × 1011 | 4.40 × 108 | 2.80 × 106 | 1.90 × 107 | 1.60 | 1.740 | 372.789 |
| 6 | 2.00 × 1011 | 4.40 × 108 | 3.50 × 106 | 1.90 × 107 | 2.40 | 2.140 | 707.576 |
| 7 | 2.00 × 1011 | 4.40 × 108 | 3.50 × 106 | 2.30 × 107 | 1.60 | 1.815 | 380.175 |
| 8 | 2.80 × 1011 | 3.20 × 108 | 3.50 × 106 | 2.30 × 107 | 2.40 | 2.650 | 915.249 |
| 9 | 2.00 × 1011 | 4.40 × 108 | 2.80 × 106 | 2.30 × 107 | 2.40 | 2.375 | 863.556 |
| 10 | 2.00 × 1011 | 3.20 × 108 | 2.80 × 106 | 1.90 × 107 | 1.60 | 1.785 | 296.200 |
| 11 | 2.00 × 1011 | 3.20 × 108 | 3.50 × 106 | 1.90 × 107 | 2.40 | 2.420 | 748.194 |
| 12 | 2.80 × 1011 | 4.40 × 108 | 2.80 × 106 | 2.30 × 107 | 2.40 | 2.440 | 887.210 |
| Source | Y1/mm | Y2/N | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Sum of Squares | df | Mean Square | F-Value | p-Value | Sum of Squares | df | Mean Square | F-Value | p-Value | |
| Model | 1.32 | 5 | 0.2650 | 19.10 | 0.0013 * | 7.11 × 105 | 5 | 1.422 × 105 | 71.69 | <0.0001 * |
| X1 | 0.0284 | 1 | 0.0284 | 2.04 | 0.2027 | 16,624.04 | 1 | 16,624.04 | 8.38 | 0.0275 * |
| X2 | 0.0326 | 1 | 0.0326 | 2.35 | 0.1759 | 2394.58 | 1 | 2394.58 | 1.21 | 0.3140 |
| X3 | 0.0002 | 1 | 0.0002 | 0.0024 | 0.9625 | 159.51 | 1 | 159.51 | 0.0804 | 0.7863 |
| X4 | 0.0300 | 1 | 0.0300 | 2.16 | 0.1918 | 12,583.3 | 1 | 12,583.30 | 6.34 | 0.0454 * |
| X5 | 1.20 | 1 | 1.20 | 86.76 | <0.0001 * | 6.816 × 105 | 1 | 6.816 × 105 | 343.65 | <0.0001 * |
| Residual | 0.0832 | 6 | 0.0139 | 11,900.22 | 6 | 1983.37 | ||||
| Serial Number | Factors | Y1/mm | Y2/N | ||
|---|---|---|---|---|---|
| X1/(N·m−3) | X4/Pa | X5/mm | |||
| 1 | 2.00 × 1011 | 1.90 × 107 | 1.60 | 2.824 | 460.959 |
| 2 | 2.16 × 1011 | 2.10 × 108 | 1.80 | 1.723 | 602.229 |
| 3 | 2.32 × 1011 | 2.30 × 108 | 2.00 | 1.771 | 589.149 |
| 4 | 2.48 × 1011 | 2.50 × 108 | 2.20 | 1.819 | 576.591 |
| 5 | 2.64 × 1011 | 2.70 × 108 | 2.40 | 2.154 | 535.780 |
| 6 | 2.80 × 1011 | 2.90 × 108 | 2.60 | 2.633 | 471.947 |
| Coding | X1/(N·m−3) | X4/Pa | X5/mm |
|---|---|---|---|
| −1 | 2.48 × 1011 | 2.50 × 108 | 2.20 |
| 0 | 2.64 × 1011 | 2.70 × 108 | 2.40 |
| 1 | 2.80 × 1011 | 2.90 × 108 | 2.60 |
| Serial Number | Factors | Response Value | |||
|---|---|---|---|---|---|
| X1/(N·m−3) | X4/(N·m−3) | X5/mm | Y1/mm | Y2/N | |
| 1 | 2.64 × 1011 | 2.70 × 108 | 2.40 | 2.130 | 540.594 |
| 2 | 2.64 × 1011 | 2.70 × 108 | 2.40 | 2.250 | 551.477 |
| 3 | 2.48 × 1011 | 2.70 × 108 | 2.20 | 2.566 | 377.296 |
| 4 | 2.80 × 1011 | 2.70 × 108 | 2.60 | 1.838 | 567.383 |
| 5 | 2.80 × 1011 | 2.50 × 108 | 2.40 | 2.035 | 543.576 |
| 6 | 2.80 × 1011 | 2.90 × 108 | 2.40 | 2.202 | 534.106 |
| 7 | 2.48 × 1011 | 2.90 × 108 | 2.40 | 2.010 | 556.186 |
| 8 | 2.48 × 1011 | 2.70 × 108 | 2.60 | 1.939 | 561.470 |
| 9 | 2.48 × 1011 | 2.50 × 108 | 2.40 | 2.164 | 527.670 |
| 10 | 2.64 × 1011 | 2.90 × 108 | 2.60 | 1.987 | 571.621 |
| 11 | 2.64 × 1011 | 2.50 × 108 | 2.60 | 2.000 | 574.551 |
| 12 | 2.64 × 1011 | 2.70 × 108 | 2.40 | 2.116 | 537.036 |
| 13 | 2.64 × 1011 | 2.70 × 108 | 2.40 | 2.106 | 536.565 |
| 14 | 2.64 × 1011 | 2.50 × 108 | 2.20 | 2.523 | 475.034 |
| 15 | 2.64 × 1011 | 2.70 × 108 | 2.40 | 2.106 | 512.600 |
| 16 | 2.80 × 1011 | 2.70 × 108 | 2.20 | 2.590 | 463.052 |
| 17 | 2.64 × 1011 | 2.90 × 108 | 2.20 | 2.566 | 464.203 |
| Source | Y1/mm | Y2/N | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Sum of Squares | df | Mean Square | F-Value | p-Value | Sum of Squares | df | Mean Square | F-Value | p-Value | |
| Model | 0.8741 | 9 | 0.0971 | 25.04 | 0.0002 * | 39,359.46 | 9 | 4373.27 | 10.3 | 0.0028 * |
| X1 | 0.0001 | 1 | 0.0001 | 0.0063 | 0.9389 | 913.67 | 1 | 913.67 | 2.15 | 0.0358 * |
| X4 | 0.0002 | 1 | 0.0002 | 0.0596 | 0.8142 | 3.49 | 1 | 3.49 | 0.0082 | 0.9303 |
| X5 | 0.7694 | 1 | 0.7694 | 198.36 | <0.0001 * | 30,682.60 | 1 | 30,682.60 | 72.27 | <0.0001 * |
| X1X4 | 0.0258 | 1 | 0.0258 | 6.64 | 0.0366 * | 360.73 | 1 | 360.73 | 0.8497 | 0.3873 |
| X1X5 | 0.0039 | 1 | 0.0039 | 1.01 | 0.3490 | 1593.73 | 1 | 1593.73 | 3.75 | 0.0939 |
| X4X5 | 0.0008 | 1 | 0.0008 | 0.2021 | 0.6666 | 15.61 | 1 | 15.61 | 0.0368 | 0.8534 |
| X12 | 0.0059 | 1 | 0.0059 | 1.51 | 0.2588 | 622.69 | 1 | 622.69 | 1.47 | 0.2652 |
| X42 | 0.0000 | 1 | 0.0000 | 0.0026 | 0.9607 | 1201.30 | 1 | 1201.30 | 2.83 | 0.1364 |
| X52 | 0.0700 | 1 | 0.0700 | 18.05 | 0.0038 * | 4096.91 | 1 | 4096.91 | 9.65 | 0.0172 * |
| Residual | 0.0272 | 7 | 0.0039 | 2971.90 | 7 | 424.56 | ||||
| Lack of Fit | 0.0121 | 3 | 0.0040 | 1.07 | 0.4563 | 2162.90 | 3 | 720.97 | 3.56 | 0.1256 |
| Response | Sensitivity Ranking | Key Factor | Secondary Factors | Weak Impact Factor |
|---|---|---|---|---|
| Y1 | X4 > X5 > X1 | X4 (Strong positive correlation) | X5 (Positive correlation) | X1 |
| Y2 | X1 > X4 > X5 | X1 (Strong positive correlation) | X4 (Interaction) | X5 |
| Factors | Value |
|---|---|
| Normal stiffness per unit area X1/N·m−3 | 2.48 × 1011 |
| Tangential stiffness per unit area X2/N·m−3 | 3.80 × 108 |
| Critical normal stress X3/Pa | 3.15 × 106 |
| Critical tangential stress X4/Pa | 2.90 × 107 |
| Radius of contact X5/mm | 1.60 |
| Name of Seedling Unloading Equipment | Single Operation Time/s | Number of Processing Personnel | Automaticity | Occupied Area/m2 | Mussel Damage Rate |
|---|---|---|---|---|---|
| Automatic traction | 20 | 2 | Automatization is more excellent | 3 | 1.2% |
| Screw type | 20 | 2 | Automatization is more excellent | 7 | 3% |
| Drum type | 31 | 3 | Artificial rope connection and release | 4 | 5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, Z.; Li, X.; Li, C.; Ye, H. Discrete Element Modelling Method and Parameter Calibration of Mussel Based on Bonding V2 Model. Machines 2026, 14, 86. https://doi.org/10.3390/machines14010086
Li Z, Li X, Li C, Ye H. Discrete Element Modelling Method and Parameter Calibration of Mussel Based on Bonding V2 Model. Machines. 2026; 14(1):86. https://doi.org/10.3390/machines14010086
Chicago/Turabian StyleLi, Zhenhua, Xinyang Li, Chen Li, and Hongbao Ye. 2026. "Discrete Element Modelling Method and Parameter Calibration of Mussel Based on Bonding V2 Model" Machines 14, no. 1: 86. https://doi.org/10.3390/machines14010086
APA StyleLi, Z., Li, X., Li, C., & Ye, H. (2026). Discrete Element Modelling Method and Parameter Calibration of Mussel Based on Bonding V2 Model. Machines, 14(1), 86. https://doi.org/10.3390/machines14010086

