A Survey of Autonomous Driving Trajectory Prediction: Methodologies, Challenges, and Future Prospects
Abstract
1. Introduction
- Modeling of input elements: how dynamic information, static information, and scene context can be collaboratively represented;
- Evolution of output form: from single-modal deterministic trajectories to multi-modal probabilized trajectories;
- Innovation of method paradigms: the efficacy boundaries of traditional methods and deep learning methods;
- Completeness of evaluation system: the adaptability of dataset characteristics and multi-dimensional evaluation indicators.
- Proposing a multi-dimensional classification framework, organizing the evolution of trajectory prediction technology from four dimensions: input representation, output form, method paradigm, and interaction modeling;
- Systematically comparing the advantages and limitations of traditional methods and deep learning models, covering the latest progress of diffusion models, Transformer architectures, and generative methods;
- Deeply analyzing the current five major challenges (complex interaction, rule dependence, long-term prediction error, extreme scene generalization, real-time constraints), providing directional guidance for future research.
2. Key Problems and Method Classification
2.1. Core Input Element
2.1.1. Dynamic Information
2.1.2. Static Information
2.1.3. Scenario Context
2.2. Output Representation
2.2.1. Trajectory Representation
- Discrete Point Sequence
- 2.
- Parametric Curve
- 3.
- Grid Occupation
2.2.2. Unimodal Prediction and Multimodal Prediction
2.2.3. Uncertainty Quantification
2.3. Classification of Trajectory Prediction Methods
2.3.1. Based on Method Paradigm
2.3.2. Based on Interaction Modeling
3. Conventional Trajectory Prediction Methods
3.1. Physics Model-Driven Methods
3.1.1. Constant Velocity/Acceleration Models
3.1.2. Bicycle Model
3.1.3. Advantages and Limitations
3.2. Maneuver-Based Methods
3.2.1. Maneuver Recognition and Classification
3.2.2. Maneuver Library-Based Trajectory Generation
3.2.3. Advantages and Limitations
3.3. PGM-Based Methods
3.3.1. Hidden Markov Model
3.3.2. Dynamic Bayesian Network
3.3.3. Advantages and Limitations
3.4. Gaussian Process Regression
3.4.1. Principles and Applications in Trajectory Prediction
3.4.2. Advantages and Limitations
4. Deep Learning-Based Trajectory Prediction Methods
4.1. Feature Encoding
4.1.1. Historical Trajectory Encoding
4.1.2. Map Information Encoding
4.1.3. Context Information Fusion
4.2. RNN-Based Methods
4.2.1. The Basic Seq2Seq Framework
4.2.2. Social Pooling
4.2.3. Advantages and Limitations
4.3. CNN-Based Methods
4.3.1. Prediction Based on Rasterized Scenes
4.3.2. Variant Architectures
4.3.3. Advantages and Limitations
4.4. GNN-Based Methods
4.4.1. Graph Representation
4.4.2. Mainstream Architectures
4.4.3. Variant and Hybrid Architectures
4.4.4. Advantages and Limitations
4.5. Transformer-Based Methods
4.5.1. Self-Attention and Global Modeling
4.5.2. Representative Architectures
4.5.3. Advantages and Limitations
4.6. Generative Model-Based Methods
4.6.1. Generative Adversarial Networks
4.6.2. Conditional Variational Autoencoder
4.6.3. Diffusion Models
4.6.4. Advantages and Limitations
5. Evaluation
5.1. Datasets
5.2. Evaluation Index
- Monomodal
- 2.
- Multimoding
- 3.
- Probability/uncertainty index
6. Challenges and Outlook
6.1. Challenges
- Complex Interactions Among Traffic Participants
- 2.
- Strong Reliance on Traffic Rules and High-Precision Maps
- 3.
- Cumulative Error and Behavioral Uncertainty in Long-Term Prediction
- 4.
- Generalization Ability for Corner Cases
- 5.
- Real-Time Requirements and Computational Efficiency
6.2. Future Research Directions
- Interactive Game Theory and Embodied Intelligence
- 2.
- Reduction and Dynamic Fusion of High-Precision Maps
- 3.
- Closed-Loop Error Correction for Long-Term Prediction
- 4.
- Causal Reasoning and Simulation Migration
- 5.
- Lightweight Architecture and Hardware Co-Design
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bharilya, V.; Kumar, N. Machine learning for autonomous vehicle’s trajectory prediction: A comprehensive survey, challenges, and future research directions. Veh. Commun. 2024, 46, 100733. [Google Scholar] [CrossRef]
- Madjid, N.A.; Ahmad, A.; Mebrahtu, M.; Babaa, Y.; Nasser, A.; Malik, S.; Hassan, B.; Werghi, N.; Dias, J.; Khonji, M. Trajectory prediction for autonomous driving: Progress, limitations, and future directions. arXiv 2025, arXiv:2503.03262. [Google Scholar] [CrossRef]
- Zhang, S.; Bai, R.; He, R.; Meng, Z.; Chang, Y.; Zhi, Y.; Sun, N. Research on vehicle trajectory prediction methods in urban main road scenarios. IEEE Trans. Intell. Transp. Syst. 2024, 25, 16392–16408. [Google Scholar] [CrossRef]
- Chen, T.; Xu, L.; Ahn, H.S.; Lu, E.; Liu, Y.; Xu, R. Evaluation of headland turning types of adjacent parallel paths for combine harvesters. Biosyst. Eng. 2023, 233, 93–113. [Google Scholar] [CrossRef]
- Jiang, J.; Yan, K.; Xia, X.; Yang, B. A survey of deep learning-based pedestrian trajectory prediction: Challenges and solutions. Sensors 2025, 25, 957. [Google Scholar] [CrossRef]
- Chen, C.; Cao, G.-Q.; Zhang, J.-L.; Hu, J.-P. Dynamic monitoring of harvester working progress based on traveling trajectory and header status. Eng. Agrícola 2023, 43, e20220196. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Li, M.; Shang, Z. Dynamic measurement method for steering wheel angle of autonomous agricultural vehicles. Agric. Basel 2024, 14, 1602. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Shen, C.; Liu, H.; Huang, J.; Tian, K.; Tang, Z. Review of the field environmental sensing methods based on multi-sensor information fusion technology. Int. J. Agric. Biol. Eng. 2024, 17, 1–13. [Google Scholar]
- Liu, W.; Hu, J.-P.; Liu, J.-X.; Yue, R.-C.; Zhang, T.-F.; Yao, M.-J.; Li, J. Method for the navigation line recognition of the ridge without crops via machine vision. Int. J. Agric. Biol. Eng. 2024, 17, 230–239. [Google Scholar] [CrossRef]
- Lu, Y.F.; Li, X.P.; Xue, Q.F. Vehicle trajectory prediction model for unknown domain scenarios. CAAI Trans. Intell. Syst. 2024, 19, 1238–1247. [Google Scholar]
- Ahmed, S.; Qiu, B.; Ahmad, F.; Kong, C.W.; Xin, H. A state-of-the-art analysis of obstacle avoidance methods from the perspective of an agricultural sprayer UAV’s operation scenario. Agronomy 2021, 11, 1069. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Li, H.; Akbar, N.; Javaid, M.; Rizwan, M.; Akhlaq, M. Evaluating corn production under different plant spacings through integrated modeling approach and simulating its future response under climate change scenarios. Agric. Water Manag. 2024, 293, 108691. [Google Scholar] [CrossRef]
- Jing, L.; Yu, R.; Chen, X.; Zhao, Z.L.; Sheng, S.W.; Graber, C.; Chen, Q.; Li, Q.R.; Wu, S.X.; Deng, H.; et al. STT: Stateful tracking with transformers for autonomous driving. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; IEEE: Piscataway, NJ, USA; pp. 4442–4449. [Google Scholar]
- Lu, E.; Ma, Z.; Li, Y.; Xu, L.; Tang, Z. Adaptive backstepping control of tracked robot running trajectory based on real-time slip parameter estimation. Int. J. Agric. Biol. Eng. 2020, 13, 178–187. [Google Scholar] [CrossRef]
- Mo, X.; Liu, H.; Huang, Z.; Li, X.; Lv, C. Map-adaptive multimodal trajectory prediction via intention-aware unimodal trajectory predictors. IEEE Trans. Intell. Transp. Syst. 2023, 25, 5651–5663. [Google Scholar] [CrossRef]
- Lu, E.; Xue, J.; Chen, T.; Jiang, S. Robust trajectory tracking control of an autonomous tractor-trailer considering model parameter uncertainties and disturbances. Agriculture 2023, 13, 869. [Google Scholar] [CrossRef]
- Buhet, T.; Wirbel, E.; Bursuc, A.; Perrotton, X. Plop: Probabilistic polynomial objects trajectory prediction for autonomous driving. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2823–2834. [Google Scholar]
- Cao, H.; Zoldy, M. Implementing B-spline path planning method based on roundabout geometry elements. IEEE Access 2022, 10, 81434–81446. [Google Scholar] [CrossRef]
- Johnson, A.; Smith, B. Real-time path planning for obstacle avoidance in intelligent driving sightseeing cars using spatial perception. IEEE Trans. Intelli. Veh. 2023, 8, 567–580. [Google Scholar]
- Schreiber, M.; Hoermann, S.; Dietmayer, K. Long-term occupancy grid prediction using recurrent neural networks. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 9299–9304. [Google Scholar]
- Zeng, W.; Luo, W.; Suo, S.; Sadat, A.; Yang, B.; Casas, S.; Urtasun, R. End-to-end interpretable neural motion planner. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Liu, H.; Yan, S.; Shen, Y.; Li, C.; Zhang, Y.; Hussain, F. Model Predictive Control System Based on Direct Yaw Moment Control for 4WID Self-Steering Agriculture Vehicle. Int. J. Agric. Biol. Eng. 2021, 14, 175–181. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Yan, X.L. Support vector machine based lane changing behavior recognition and lateral trajectory prediction. Comp. Intell. Neurosci. 2022, 2022, 36362333. [Google Scholar] [CrossRef]
- Han, L.; Mao, H.; Kumi, F.; Hu, J. Development of a multi-task robotic transplanting workcell for greenhouse seedlings. Appl. Eng. Agric. 2018, 34, 335–342. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, C.; Sun, Z.; Chen, Y.V.; Chen, M. SplatFlow: Self-supervised dynamic gaussian splatting in neural motion flow field for autonomous driving. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR), Nashville TN, USA, 11–15 June 2025; pp. 27487–27496. [Google Scholar]
- Xing, Z.; Zhang, X.; Hu, Y.; Jiang, B.; He, T.; Zhang, Q.; Long, X.X.; Wei, Y. Goalflow: Goal-driven flow matching for multimodal trajectories generation in end-to-end autonomous driving. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR), Nashville TN, USA, 11–15 June 2025; pp. 1602–1611. [Google Scholar]
- Luo, L.; Liu, X.; Ma, S.; Li, L.; You, T. Quantification of zearalenone in mildewing cereal crops using an innovative photoelectrochemical aptamer sensing strategy based on ZnO-NGQDs composites. Food Chem. 2020, 322, 126778. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Cao, Y.; Yin, X.; Dong, F.; Xu, J.; Shi, J.; Lee, Y.W. Rapid and nondestructive quantification of deoxynivalenol in individual wheat kernels using near-infrared hyperspectral imaging and chemometrics. Food Control 2022, 131, 108420. [Google Scholar] [CrossRef]
- Yoon, Y.; Kim, C.; Lee, J.; Yi, K. Interaction-aware probabilistic trajectory prediction of cut-in vehicles using Gaussian process for proactive control of autonomous vehicles. IEEE Access 2021, 9, 63440–63455. [Google Scholar] [CrossRef]
- Mao, W.; Xu, C.; Zhu, Q.; Chen, S.; Wang, Y. Leapfrog diffusion model for stochastic trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Choi, J.; Kim, B.; Kim, H. Trajectory generation for autonomous vehicles using generative adversarial imitation learning. IEEE Trans. Intell. Transp. Syst. 2020, 21, 4684–4695. [Google Scholar]
- Hu, D.; Sun, T.; Yao, L.; Yang, Z.; Wang, A.; Ying, Y. Monte Carlo: A flexible and accurate technique for modeling light transport in food and agricultural products. Trends Food Sci. Techn. 2020, 102, 280–290. [Google Scholar] [CrossRef]
- Li, G.P.; Li, Z.R.; Knoop, V.L.; van Lint, H. Unravelling uncertainty in trajectory prediction using a non-parametric approach. Transp. Res. Part C Emerg. Technol. 2024, 163, 104659. [Google Scholar] [CrossRef]
- Yang, H.B.; Wang, Z.Y.; Xu, M.; Yang, D.P.; Zhao, Z.F. Improved deep transfer learning and transmission error based method for gearbox fault diagnosis with limited test samples. Mech. Syst. Sig. Process. 2025, 230, 112593. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, Z.; Wang, A.; Gu, X.; Lv, Z. Kinetic models applied to quality change and shelf life prediction of kiwifruits. LWT 2021, 138, 110610. [Google Scholar] [CrossRef]
- Soni, D.; Kumar, N. Machine learning techniques in emerging cloud computing integrated paradigms: A survey and taxonomy. J. Netw. Comput. Appl. 2022, 205, 103419. [Google Scholar] [CrossRef]
- Xin, L.; Wang, P.; Chan, C.Y.; Chen, J.; Li, S.E.; Cheng, B. Intention-aware long horizon trajectory prediction of surrounding vehicles using dual LSTM networks. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 1441–1446. [Google Scholar]
- Zhao, S.E.; Su, T.B.; Zhao, D.Y. Interactive Vehicle Driving Intention Recognition and Trajectory Prediction Based on Graph Neural Network. Automob. Technol. 2023, 7, 24–30. [Google Scholar]
- Zhang, R.; Cao, L.; Bao, S.; Tan, J. A method for connected vehicle trajectory prediction and collision warning algorithm based on v2v communication. Int. J. Crash Worthiness 2017, 22, 15–25. [Google Scholar] [CrossRef]
- Lefkopoulos, V.; Menner, M.; Domahidi, A.; Zeilinger, M.N. Interaction-aware motion prediction for autonomous driving: A multiple model Kalman filtering scheme. IEEE Robot. Autom. Lett. 2020, 6, 80–87. [Google Scholar] [CrossRef]
- Brännström, M.; Coelingh, E.; Sjöberg, J. Model-based threat assessment for avoiding arbitrary vehicle collisions. IEEE Trans. Intell. Transp. Syst. 2010, 11, 658–669. [Google Scholar] [CrossRef]
- Lytrivis, P.; Thomaidis, G.; Amditis, A. Cooperative path prediction in vehicular environments. In Proceedings of the 2008 11th International IEEE Conference on Intelligent Transportation Systems, Beijing, China, 12–15 October 2008; IEEE: Piscataway, NJ, USA; pp. 803–808. [Google Scholar]
- Lin, C.F.; Ulsoy, A.G.; LeBlanc, D.J. Vehicle dynamics and external disturbance estimation for vehicle path prediction. IEEE Trans. Control Syst. Technol. 2000, 8, 508–518. [Google Scholar]
- Barth, A.; Franke, U. Where will the oncoming vehicle be the next second? In Proceedings of the 2008 IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, 4–6 June 2008; IEEE: Piscataway, NJ, USA; pp. 1068–1073. [Google Scholar]
- Batz, T.; Watson, K.; Beyerer, J. Recognition of dangerous situations within a cooperative group of vehicles. In Proceedings of the 2009 IEEE Intelligent Vehicles Symposium, Xi’an, China, 3–5 June 2009; IEEE: Piscataway, NJ, USA; pp. 907–912. [Google Scholar]
- Ammoun, S.; Nashashibi, F. Real time trajectory prediction for collision risk estimation between vehicles. In Proceedings of the 2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 27–29 August 2009; IEEE: Piscataway, NJ, USA; pp. 417–422. [Google Scholar]
- Schubert, R.; Richter, E.; Wanielik, G. Comparison and evaluation of advanced motion models for vehicle tracking. In Proceedings of the 2008 11th International Conference on Information Fusion, Cologne, Germany, 30 June–3 July 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–6. [Google Scholar]
- Polychronopoulos, A.; Tsogas, M.; Amditis, A.J.; Andreone, L. Sensor fusion for predicting vehicles’ path for collision avoidance systems. IEEE Trans. Intell. Transp. Syst. 2007, 8, 549–562. [Google Scholar] [CrossRef]
- Houenou, A.; Bonnifait, P.; Cherfaoui, V.; Yao, W. Vehicle trajectory prediction based on motion model and maneuver recognition. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; IEEE: Piscataway, NJ, USA; pp. 4363–4369. [Google Scholar]
- Tran, Q.; Firl, J. Online maneuver recognition and multimodal trajectory prediction for intersection assistance using non-parametric regression. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium, Dearborn, MI, USA, 8–11 June 2014; IEEE: Piscataway, NJ, USA; pp. 918–923. [Google Scholar]
- Wissing, C.; Nattermann, T.; Glander, K.H.; Bertram, T. Interaction-aware long-term driving situation prediction. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; IEEE: Piscataway, NJ, USA; pp. 137–143. [Google Scholar]
- Okamoto, K.; Berntorp, K.; Di Cairano, S. Driver intention-based vehicle threat assessment using random forests and particle filtering. IFAC Pap. OnLine 2017, 50, 13860–13865. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Zuo, Z.; Li, Z.; Wang, L.; Luo, X. Trajectory planning and safety assessment of autonomous vehicles based on motion prediction and model predictive control. IEEE Trans. Veh. Technol. 2019, 68, 8546–8556. [Google Scholar] [CrossRef]
- Wang, B.; Deng, J.; Jiang, H. Markov transition field combined with convolutional neural network improved the predictive performance of near-infrared spectroscopy models for determination of aflatoxin B1 in maize. Foods 2022, 11, 2210. [Google Scholar] [CrossRef]
- Albeaik, S.; Bayen, A.; Chiri, M.T.; Gong, X.; Hayat, A.; Kardous, N.; Keimer, A.; McQuade, S.T.; Piccoli, B.; You, Y. Limitations and improvements of the intelligent driver model (IDM). SIAM J. Appl. Dyn. Syst. 2022, 21, 1862–1892. [Google Scholar] [CrossRef]
- Qiao, S.; Shen, D.; Wang, X.; Han, N.; Zhu, W. A self-adaptive parameter selection trajectory prediction approach via hidden Markov models. IEEE Trans. Intell. Transp.Syst. 2014, 16, 284–296. [Google Scholar] [CrossRef]
- Deng, Q.; Söffker, D. Improved driving behaviors prediction based on fuzzy logic-hidden Markov model (FL-HMM). In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; IEEE: Piscataway, NJ, USA; pp. 2003–2008. [Google Scholar]
- Wang, Y.; Wang, C.; Zhao, W.; Xu, C. Decision-making and planning method for autonomous vehicles based on motivation and risk assessment. IEEE Trans. Veh. Technol. 2021, 70, 107–120. [Google Scholar] [CrossRef]
- Gindele, T.; Brechtel, S.; Dillmann, R. Learning driver behavior models from traffic observations for decision making and planning. IEEE Intell. Transp. Syst. Mag. 2015, 7, 69–79. [Google Scholar] [CrossRef]
- He, G.; Li, X.; Lv, Y.; Gao, B.; Chen, H. Probabilistic intention prediction and trajectory generation based on dynamic Bayesian networks. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; IEEE: Piscataway, NJ, USA; pp. 2646–2651. [Google Scholar]
- Murphy, K.P. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2002. [Google Scholar]
- Schreier, M.; Willert, V.; Adamy, J. An integrated approach to maneuver-based trajectory prediction and criticality assessment in arbitrary road environments. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2751–2766. [Google Scholar] [CrossRef]
- Li, J.; Dai, B.; Li, X.; Xu, X.; Liu, D. A dynamic Bayesian network for vehicle maneuver prediction in highway driving scenarios: Framework and verification. Electronics 2019, 8, 40. [Google Scholar] [CrossRef]
- Laugier, C.; Paromtchik, I.E.; Perrollaz, M.; Yong, M.; Yoder, J.-D.; Tay, C.; Mekhnacha, K.; Nègre, A. Probabilistic analysis of dynamic scenes and collision risks assessment to improve driving safety. IEEE Intell. Transp. Syst. Mag. 2011, 3, 4–19. [Google Scholar] [CrossRef]
- Guo, Y.; Kalidindi, V.V.; Arief, M.; Wang, W.; Zhu, J.; Peng, H.; Zhao, D. Modeling multi-vehicle interaction scenarios using Gaussian random field. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; IEEE: Piscataway, NJ, USA; pp. 3974–3980. [Google Scholar]
- Dabbour, M.; He, R.; Mintah, B.; Tang, Y.; Ma, H. Ultrasound assisted enzymolysis of sunflower meal protein: Kinetics and thermodynamics modeling. J. Food Proc. Eng. 2018, 41, e12865. [Google Scholar] [CrossRef]
- Sun, J.; Shi, J.; Mu, Y.; Zhou, S.; Chen, Z.; Xu, B. Subcritical butane extraction of oil and minor bioactive components from soybean germ: Determination of migration patterns and a kinetic model. J. Food Proc. Eng. 2018, 41, e12697. [Google Scholar] [CrossRef]
- Ouyang, Q.; Fan, Z.; Chang, H.; Shoaib, M.; Chen, Q. Analyzing TVB-N in snakehead by Bayesian-optimized 1D-CNN using molecular vibrational spectroscopic techniques: Near-infrared and Raman spectroscopy. Food Chem. 2025, 464, 141701. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Tian, Y.; Lu, B.; Hang, Y.; Chen, Q. Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce. Food Chem. 2020, 321, 126503. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.; Steibel, J.; Siegford, J.; Han, J.; Norton, T. Classification of drinking and drinker-playing in pigs by a video-based deep learning method. Biosyst. Eng. 2020, 196, 1–14. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, C.; Sun, J.; Cao, Y.; Yao, K.; Xu, M. A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging. Food Chem. 2023, 409, 135251. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Z.; Zhang, Y.; Zhou, J.; Wu, J.; Li, P. Real-time detection and location of potted flowers based on a ZED camera and a YOLO V4-tiny deep learning algorithm. Horticulturae 2021, 8, 21. [Google Scholar] [CrossRef]
- Li, H.; Luo, X.; Haruna, S.A.; Zareef, M.; Chen, Q.; Ding, Z.; Yan, Y. Au-Ag OHCs-based SERS sensor coupled with deep learning CNN algorithm to quantify thiram and pymetrozine in tea. Food Chem. 2023, 428, 136798. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Dai, C. Multi-task convolutional neural network for simultaneous monitoring of lipid and protein oxidative damage in frozen-thawed pork using hyperspectral imaging. Meat Sci. 2023, 201, 109196. [Google Scholar]
- Cheng, J.; Sun, J.; Yao, K.; Dai, C. Generalized and hetero two-dimensional correlation analysis of hyperspectral imaging combined with three-dimensional convolutional neural network for evaluating lipid oxidation in pork. Food Control 2023, 153, 109940. [Google Scholar]
- Gilles, T.; Sabatini, S.; Tsishkou, D.V.; Stanciulescu, B.; Moutarde, F. Home: Heatmap output for future motion estimation. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 500–507. [Google Scholar]
- Azadani, M.N.; Boukerche, A. A novel multimodal vehicle path prediction method based on temporal convolutional networks. IEEE Trans. Intell. Transp. Syst. 2022, 23, 25384–25395. [Google Scholar] [CrossRef]
- Wang, C.; Cai, S.; Tan, G.S.H. Graphtcn: Spatio-temporal interaction modeling for human trajectory prediction. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Vancouver, BC, Canada, 17–24 June 2020; pp. 3449–3458. [Google Scholar]
- Chen, X.; Hassan, M.M.; Yu, J.; Zhu, A.; Han, Z.; He, P.; Ouyang, Q. Time series prediction of insect pests in tea gardens. J. Sci. Food Agric. 2024, 104, 5614–5624. [Google Scholar]
- Nunekpeku, X.; Zhang, W.; Gao, J.; Adade, S.Y.S.S.; Li, H.; Chen, Q. Gel strength prediction in ultrasonicated chicken mince: Fusing near-infrared and Raman spectroscopy coupled with deep learning LSTM algorithm. Food Control 2025, 168, 110916. [Google Scholar]
- Zyner, A.; Worrall, S.; Nebot, E. A recurrent neural network solution for predicting driver intention at unsignalized intersections. IEEE Robot. Auto. Lett. 2018, 3, 1759–1764. [Google Scholar] [CrossRef]
- Roy, D.; Ishizaka, T.; Mohan, C.K.; Fukuda, A. Vehicle trajectory prediction at intersections using interaction based generative adversarial networks. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; IEEE: Piscataway, NJ, USA; pp. 2318–2323. [Google Scholar]
- Cho, K.; Ha, T.; Lee, G.; Oh, S. Deep predictive autonomous driving using multi-agent joint trajectory prediction and traffic rules. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; IEEE: Piscataway, NJ, USA; pp. 2076–2081. [Google Scholar]
- Zhang, Z. Resnet-based model for autonomous vehicles trajectory prediction. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 15–17 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 565–568. [Google Scholar]
- Bojarski, M.; Yeres, P.; Choromanska, A.; Choromanski, K.; Firner, B.; Jackel, L.; Muller, U. Explaining how a deep neural network trained with end-to-end learning steers a car. arXiv 2017, arXiv:1704.07911. [Google Scholar]
- Jeong, H.; Shin, J.; Rameau, F.; Kum, D. Multi-modal place recognition via vectorized HD maps and images fusion for autonomous driving. IEEE Robot. Autom. Let. 2024, 9, 4710–4717. [Google Scholar] [CrossRef]
- Huang, X.Y.; Pan, S.H.; Sun, Z.Y.; Ye, W.T.; Aheto, J.H. Evaluating quality of tomato during storage using fusion information of computer vision and electronic nose. J. Food Proc. Eng. 2018, 41, e12832. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Tian, Y.; Wu, X.; Dai, C.; Li, B. Spectral classification of lettuce cadmium stress based on information fusion and VISSA-GOA-SVM algorithm. J. Food Proc. Eng. 2019, 42, e13085. [Google Scholar] [CrossRef]
- Chandra, R.; Bhattacharya, U.; Bera, A.; Manocha, D. Traphic: Trajectory prediction in dense and heterogeneous traffic using weighted interactions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 8483–8492. [Google Scholar]
- Xu, S.; Xu, X.; Zhu, Q.; Meng, Y.; Yang, G.; Feng, H.; Yang, M.; Zhu, Q.; Xue, H.; Wang, B. Monitoring leaf nitrogen content in rice based on information fusion of multi-sensor imagery from UAV. Precis. agric. 2023, 24, 2327–2349. [Google Scholar]
- Tao, K.; Wang, A.; Shen, Y.; Lu, Z.; Peng, F.; Wei, X. Peach flower density detection based on an improved CNN incorporating attention mechanism and multi-scale feature fusion. Horticulturae 2022, 8, 904. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, J.; Li, Y.H.; Huang, Y.K. Query-centric trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 17863–17873. [Google Scholar]
- Chen, J.; Lian, Y.; Zou, R.; Zhang, S.; Ning, X.; Han, M. Real-time grain breakage sensing for rice combine harvesters using machine vision technology. Int. J. Agric. Biol. Eng. 2020, 13, 194–199. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, J.; Wang, J.; Cai, L.; Jin, Y.; Zhao, S.; Xie, B. Realtime picking point decision algorithm of trellis grape for high-speed robotic cut-and-catch harvesting. Agronomy 2023, 13, 1618. [Google Scholar] [CrossRef]
- Zyner, A.; Worrall, S.; Ward, J.; Nebot, E. Long short-term memory for driver intent prediction. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; IEEE: Piscataway, NJ, USA; pp. 1484–1489. [Google Scholar]
- Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Savarese, S. Social LSTM: Human Trajectory Prediction in Crowded Spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; Volume 9, pp. 961–971. [Google Scholar]
- Xue, H.; Huynh, D.Q.; Reynolds, M. Pedestrian trajectory prediction using a social pyramid. In Proceedings of the Pacific Rim International Conference on Artificial Intelligence; Springer International Publishing: Cham, Switzerland, 2019; pp. 439–453. [Google Scholar]
- Xu, Y.; Piao, Z.; Gao, S. Encoding crowd interaction with deep neural network for pedestrian trajectory prediction. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 5275–5284. [Google Scholar]
- Deo, N.; Rangesh, A.; Trivedi, M.M. How would surround vehicles move? A unified framework for maneuver classification and motion prediction. IEEE Trans. Intell. Veh. 2018, 3, 129–140. [Google Scholar] [CrossRef]
- Sriram, N.N.; Liu, B.; Pittaluga, F.; Chandraker, M. Smart: Simultaneous multi-agent recurrent trajectory prediction. In Proceedings of the European Conference on Computer Vision; Springer International Publishing: Cham, Switzerland, 2020; pp. 463–479. [Google Scholar]
- Zhang, T.; Zhou, J.; Liu, W.; Yue, R.; Shi, J.; Zhou, C.; Hu, J. SN-CNN: A lightweight and accurate line extraction algorithm for seedling navigation in ridge-planted vegetables. Agric. Basel 2024, 14, 1446. [Google Scholar] [CrossRef]
- Pan, Y.; Jin, H.; Gao, J.; Rauf, H.T. Identification of buffalo breeds using self-activated-based improved convolutional neural networks. Agriculture 2022, 12, 1386. [Google Scholar] [CrossRef]
- Guo, Z.; Zou, Y.; Sun, C.; Jayan, H.; Jiang, S.; El-Seedi, H.R.; Zou, X. Nondestructive determination of edible quality and watercore degree of apples by portable Vis/NIR transmittance system combined with CARS-CNN. J. Food Meas. Charact. 2024, 18, 4058–4073. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, Y.; Liu, C.; Zhou, L.; Tang, L.; Wei, H.; Tang, Y. Rapid and non-destructive geographical origin identification of Chuanxiong slices using near-infrared spectroscopy and convolutional neural networks. Agriculture 2024, 14, 1281. [Google Scholar] [CrossRef]
- Cui, H.; Radosavljevic, V.; Chou, F.C.; Lin, T.-H.; Nguyen, T.; Huang, T.-K.; Schneider, J.; Djuric, N. Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; IEEE: Piscataway, NJ, USA; pp. 2090–2096. [Google Scholar]
- Nikhil, N.; Morris, B.T. Convolutional neural network for trajectory prediction. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops; Springer International Publishing: Cham, Switzerland, 2019; pp. 186–196. [Google Scholar]
- Chaabane, M.; Trabelsi, A.; Blanchard, N.; Beveridge, R. Looking ahead: Anticipating pedestrians crossing with future frames prediction. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass Village, CO, USA, 1–5 March 2020; IEEE Computer Society: Los Alamitos, CA, USA, 2020; pp. 2286–2295. [Google Scholar]
- Lian, J.; Luo, Y.; Wang, X.; Li, L.; Guo, G.; Ren, W.; Zhang, T. Dual-STGAT: Dual spatio-temporal graph attention networks with feature fusion for pedestrian crossing intention prediction. IEEE Trans. Intell. Transp. Syst. 2025, 26, 5396–5410. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Chen, T.; Zhang, X.; Taha, M.F.; Yang, N.; Shi, Q. Cucumber downy mildew disease prediction using a CNN-LSTM approach. Agriculture 2024, 14, 1155. [Google Scholar] [CrossRef]
- Qiu, D.; Guo, T.; Yu, S.; Liu, W.; Li, L.; Sun, Z.; Hu, D. Classification of apple color and deformity using machine vision combined with CNN. Agriculture 2024, 14, 978. [Google Scholar] [CrossRef]
- Lin, H.; Pan, T.; Li, Y.; Chen, S.; Li, G. Development of analytical method associating near-infrared spectroscopy with one-dimensional convolution neural network: A case study. J. Food Meas. Charac. 2021, 15, 2963–2973. [Google Scholar] [CrossRef]
- Li, X.; Ying, X.; Chuah, M.C. Grip++: Enhanced graph-based interaction-aware trajectory prediction for autonomous driving. arXiv 2019, arXiv:1907.07792. [Google Scholar]
- Jeon, H.; Choi, J.; Kum, D. Scale-net: Scalable vehicle trajectory prediction network under random number of interacting vehicles via edge-enhanced graph convolutional neural network. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2021; IEEE: Piscataway, NJ, USA, 2020; pp. 2095–2102. [Google Scholar]
- Liang, M.; Yang, B.; Hu, R.; Chen, Y.; Liao, R.; Feng, S.; Urtasun, R. Learning lane graph representations for motion forecasting. In Proceedings of the European Conference on Computer Vision; Springer International Publishing: Cham, Switzerland, 2020; pp. 541–556. [Google Scholar]
- Gao, J.; Sun, C.; Zhao, H.; Shen, Y.; Anguelov, D.; Li, C.; Schmid, C. Vectornet: Encoding HD maps and agent dynamics from vectorized representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11525–11533. [Google Scholar]
- Ding, Z.; Yao, Z.; Zhao, H. RA-GAT: Repulsion and attraction graph attention for trajectory prediction. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; IEEE: Piscataway, NJ, USA; pp. 734–741. [Google Scholar]
- Salzmann, T.; Ivanovic, B.; Chakravarty, P.; Pavone, M. Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data. arXiv 2021, arXiv:2001.03093v5. [Google Scholar]
- Chen, W.; Wang, F.; Sun, H. S2TNet: Spatio-temporal transformer networks for trajectory prediction in autonomous driving. In Proceedings of the 13th Asian Conference on Machine Learning, Virtual, 17–19 November 2021; Volume 157, pp. 454–469. [Google Scholar]
- Wen, L.; Li, W.; Yan, J.; Lei, Z.; Yi, D.; Li, S.Z. Multiple Target Tracking Based on Undirected Hierarchical Relation Hypergraph. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 1282–1289. [Google Scholar]
- Zhu, W.; Sun, J.; Wang, S.; Shen, J.; Yang, K.; Zhou, X. Identifying field crop diseases using transformer-embedded convolutional neural network. Agriculture 2022, 12, 1083. [Google Scholar] [CrossRef]
- Ji, W.; Zhai, K.; Xu, B.; Wu, J. Green apple detection method based on multidimensional feature extraction network model and transformer module. J. Food Protec. 2025, 88, 100397. [Google Scholar] [CrossRef]
- Ji, W.; Wang, J.; Xu, B.; Zhang, T. Apple grading based on multi-dimensional view processing and deep learning. Foods 2023, 12, 2117. [Google Scholar] [CrossRef]
- Zuo, X.; Chu, J.; Shen, J.; Sun, J. Multi-granularity feature aggregation with self-attention and spatial reasoning for fine-grained crop disease classification. Agriculture 2022, 12, 1499. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, Y.; Liu, J.; Wu, S. Tomato leaf disease diagnosis based on improved convolution neural network by attention module. Agriculture 2021, 11, 651. [Google Scholar] [CrossRef]
- You, J.; Li, D.; Wang, Z.; Chen, Q.; Ouyang, Q. Prediction and visualization of moisture content in Tencha drying processes by computer vision and deep learning. J. Sci. Food Agric. 2024, 104, 5486–5494. [Google Scholar] [CrossRef]
- Giuliari, F.; Hasan, I.; Cristani, M.; Galasso, F. Transformer networks for trajectory forecasting. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 10335–10342. [Google Scholar]
- Ngiam, J.; Caine, B.; Vasudevan, V.; Zhang, Z.; Chiang, H.T.L.; Ling, J.; Roelofs, R.; Bewley, A.; Liu, C.X.; Venugopal, A.; et al. Scene transformer: A unified multi-task model for behavior prediction and planning. arXiv 2021, arXiv:2106.08417. [Google Scholar]
- Yuan, Y.; Weng, X.; Ou, Y.; Kitani, K. Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 10–17 October 2021; pp. 9793–9803. [Google Scholar]
- Zhou, Z.; Ye, L.; Wang, J.; Wu, K.; Lu, K.J. Hivt: Hierarchical vector transformer for multi-agent motion prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 8823–8833. [Google Scholar]
- Achaji, L.; Barry, T.; Fouqueray, T.; Moreau, J.; Aioun, F.; Charpillet, F. Pretr: Spatio-temporal non-autoregressive trajectory prediction transformer. In Proceedings of the IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8–12 October 2022; pp. 2457–2464. [Google Scholar]
- Gupta, A.; Johnson, J.; Fei-Fei, L.; Savarese, S.; Alahi, A. Social Gan: Socially acceptable trajectories with generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 2255–2264. [Google Scholar]
- Sadeghian, A.; Kosaraju, V.; Sadeghian, A.; Hirose, N.; Rezatofighi, H.; Savarese, S. Sophie: An attentive gan for predicting paths compliant to social and physical constraints. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 1349–1358. [Google Scholar]
- Zhao, T.; Xu, Y.; Monfort, M.; Choi, W.; Baker, C.; Zhao, Y.; Wu, Y.N. Multi-agent tensor fusion for contextual trajectory prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 12126–12134. [Google Scholar]
- Lee, N.; Choi, W.; Vernaza, P.; Choy, C.B.; Torr, P.H.; Chandraker, M. Desire: Distant future prediction in dynamic scenes with interacting agents. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 336–345. [Google Scholar]
- Jiang, C.M.; Cornman, A.; Park, C.; Sapp, B.; Zhou, Y.; Anguelov, D. MotionDiffuser: Controllable multi-agent motion prediction using diffusion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 18–22 June 2023; IEEE Computer Society: Los Alamitos, CA, USA, 2023; pp. 9644–9653. [Google Scholar]
- Yuan, Y.; Song, J.; Iqbal, U.; Vahdat, A.; Kautz, J. Physdiff: Physics-guided human motion diffusion model. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 4–6 October 2023; pp. 16010–16021. [Google Scholar]
- Li, W.; Shi, Y.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; Shi, J. Study on the diffusion and optimization of sucrose in gaido seak based on finite element analysis and hyperspectral imaging technology. Foods 2024, 13, 249. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.; Tian, X.; Ren, Y.; Bonah, E.; Alenyorege, E.A. Combination of spectra and image information of hyperspectral imaging data for fast prediction of lipid oxidation attributes in pork meat. J. Food Proc. Eng. 2019, 42, e13225. [Google Scholar] [CrossRef]
- Awais, M.; Li, W.; Hussain, S.; Cheema, M.J.M.; Li, W. Comparative evaluation of land surface temperature images from unmanned aerial vehicle and satellite observation for agricultural areas using in situ data. Agriculture 2022, 12, 184. [Google Scholar] [CrossRef]
- Zhu, W.; Li, J.; Li, L.; Wang, A.; Wei, X.; Mao, H. Nondestructive diagnostics of soluble sugar, total nitrogen and their ratio of tomato leaves in greenhouse by polarized spectra–hyperspectral data fusion. Int. J. Agr. Biol. Eng. 2020, 13, 189–197. [Google Scholar] [CrossRef]
- Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A multimodal dataset for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; IEEE Computer Society: Los Alamitos, CA, USA, 2020; pp. 11618–11628. [Google Scholar]
- Chang, M.F.; Lambert, J.; Sangkloy, P.; Singh, J.; Bak, S.; Hartnett, A.; Wang, D.; Carr, P.; Lucey, S.; Ramanan, D.; et al. Argoverse: 3D Tracking and forecasting with rich maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–17 June 2019; pp. 8748–8757. [Google Scholar]
- Zhang, B.; Li, J.; Song, N.; Zhang, L. Perception in Plan: Coupled perception and planning for end-to-end autonomous driving. arXiv 2025, arXiv:2508.11488. [Google Scholar]
- Guo, E.; An, P.; Yang, Y.; Liu, Q.; Liu, A.A. FSF-Net: Enhance 4D occupancy forecasting with coarse BEV scene flow for autonomous driving. Pattern Recognit. 2025, 112372. [Google Scholar] [CrossRef]
- Wang, C.; Liao, H.; Wang, B.; Guan, Y.; Rao, B.; Pu, Z.; Cui, Z.; Xu, C.-Z.; Li, Z. Nest: A neuromodulated small-world hypergraph trajectory prediction model for autonomous driving. In Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, PA, USA, 25 February–4 March 2025; Volume 39, pp. 808–816. [Google Scholar]
Items | Unimodal Prediction | Multimodal Prediction |
---|---|---|
Applicable scenarios | Simple, purposeful scenarios | Complex scenarios with uncertain intent |
Merit | Efficient, fast, and with few computing resources | Provide multiple trajectories, consider intention uncertainty |
Drawback | Inability to deal with intention uncertainty | High computational complexity and large data requirements |
Example | Freeway straight ahead | Urban road intersections, confluence areas, pedestrian dense areas |
Method | Physical models, machine learning models | Probabilistic models, deep learning models |
Output | A most probable trajectory | Multiple possible trajectories and their probabilities |
Method Category | Representative Models | Advantages | Limitations | Applicable Scenarios |
---|---|---|---|---|
Physics Model-Driven Approaches | Kalman Filter [39,40] CV/CA model [41,42,43,44,45] bicycle model [42,44,45,46,47,48] | Simple and efficient, highly interpretable, accurate in short-term prediction | Unable to handle interactions or intent changes, large long-term errors | Short-term prediction (<1 s), structured roads |
Maneuver-based approaches | Maneuver identification + CYRA model, Monte Carlo methods [49,50,51,52,53,54,55] | Behavioral intent explicit, conducive to decision planning | Limited maneuver library coverage, weak interaction modeling | Highway scenarios, conventional behavior prediction |
Probabilistic Graphical model | Hidden Markov Models [56,57,58] Dynamic Bayesian Network [59,60,61,62,63] | Capable of modeling uncertainty, fusing multi-source information | Complex model, high inference computational load, struggles with high-dimensional spaces | Multi-factor scenarios, low-dimensional state prediction |
Gaussian Process Regression | GPR + HMM [64,65] | Provides natural uncertainty estimation, high flexibility | High computational complexity, difficult to handle large-scale interactions | Small-sample scenarios, high-precision prediction requirements |
Reference | Core Contribution/Method | Interaction Modeling | Key Architectural Feature |
---|---|---|---|
Zyner et al. (2018) [95] | The basic Seq2Seq framework is used to predict drivers’ intentions at unsignalized intersections. | Unmodeled | Single RNN encoder–decoder |
Alahi et al. (2016) [96] | Propose Social LSTM, the first systematic introduction of social interaction modeling. | Social Pooling | LSTM with social pooling layer |
Xue et al. (2019) [97] | A multi-scale social information representation method called “Social Pyramid” has been proposed | Social Pyramid Pooling | Hybrid attention layer dual encoder architecture |
Xu et al. (2018) [98] | First explicit learning of spatial affinity weighted interactions for all pedestrians | Explicit interaction modeling | 2-layer LSTM motion encoder, 3-layer MLP coordinate encoder |
Deo et al. (2018) [99] | Multi modal prediction based on mobility | Implicit modeling (through maneuver classification) | Single encoder + multiple mobile specific decoders |
Sriram et al. (2020) [100] | The Joint Prediction paradigm allows the model to enforce consistency constraints between the predictions of all agents | Explicit modeling (global joint modeling) | Multi-Agent RNN |
Reference | Core Contribution/Method | Interaction Modeling | Key Architectural Feature |
---|---|---|---|
Cui et al. (2019) [105] | Encode dynamic attributes into raster images and use CNN for relationship learning. | Implicit modeling | Pure CNN architecture |
Nikhil et al. (2019) [106] | Using stacked convolutional layers to capture spatiotemporal continuity | Social-unaware | Seq2Seq |
Zhang et al. (2021) [84] | Using ResNet-34 as an end-to-end regression network | Implicit modeling | ResNet |
Deo et al. (2018) [99] | The first explicit hierarchical modeling of spatial interaction using CNN | Convolutional Social Pooling | CNN-LSTM |
Chaabane et al. (2020) [107] | Not directly predicting trajectories, but predicting future scenarios | Implicit modeling | ConvLSTM + 3D CNN |
Chandra et al. (2019) [89] | Used for weighted interaction modeling and trajectory prediction of heterogeneous agents in busy traffic scenarios | Explicit modeling | CNN-LSTM |
Reference | Key Architectural Feature | Interaction Modeling | Map Representation |
---|---|---|---|
Li et al. (2019) [112] | GCN + LSTM | Spatiotemporal proximity map | Not used |
Jeon et al. (2020) [113] | Multi scale self graph + scale invariant learning | Dynamic bidirectional aggregation + hierarchical skip connection | Vectorized map |
Liang et al. (2020) [114] | GAT + CNN | Agent Lane Attention | Vectorized lane map |
Gao et al. (2020) [115] | GNN (Hierarchical) | Agent Lane graph, global attention | Vectorized subgraph |
Ding et al. (2021) [116] | Dual GAT | Vehicle repulsion + Space attraction | Rasterized grid |
Salzmann et al. (2020) [117] | GNN + LSTM + CVAE | Heterogeneous spatiotemporal graph | Vectorized map |
Chen et al. (2021) [118] | Spatio-temporal Transformer + GNN | Spatial self-attention + Time Transformer | Not used |
Wen et al. (2014) [119] | Hypergraph neural network + SSVM optimization | High-order trajectory dependency relationship | Not used |
Reference | Method | Interaction Modeling | Key Architectural Feature |
---|---|---|---|
Gupta et al. [131] | GAN | Social Pooling | Generator and Discriminator Based on LSTM |
Sadeghian et al. [132] | GAN | Physical and Social Attention Mechanisms | GAN combining CNN scene encoding and attention mechanism |
Zhao et al. [133] | GAN | Multi-agent tensor fusion | Tensor-based feature fusion + LSTM decoder |
Lee et al. [134] | CVAE | Implicit modeling | CVAE + RNN + rating module |
Salzmann et al. [117] | CVAE | Heterogeneous Spatiotemporal Graph Neural Network | GNN encoder + CVAE + dynamic component |
Jiang et al. [135] | Diffusion Model | Implicit interaction modeling | Trainable leapfrog initializer + reduced denoising steps |
Yuan et al. [136] | Diffusion Model | Implicit interaction | Diffusion model + physical constraints |
Dataset Name | Scene Type | Annotated Information |
---|---|---|
nuScenes | City roads, highways. | Trajectory, velocity, acceleration, direction, etc. |
Argoverse (1 & 2) | City roads | Trajectory, road topology, traffic lights, etc. |
Waymo Open Dataset | Multiple traffic scenarios | Trajectory, category, velocity, acceleration, etc. |
Lyft Level 5 | Autopilot related scenarios | Trajectory, motion state, environmental information |
Apolloscape Trajectory | Multiple traffic scenarios | Trajectory, law of motion, etc. |
ETH/UCY | Campus, square, etc. | Trajectory, environmental information |
Stanford Drone Dataset | Campus, street, etc | Trajectory, environmental information |
TrajNet++ | Campus, square, street, etc. | Trajectory, velocity, acceleration, etc. |
INTERACTION Datase | Autopilot scenarios (multimodal) | Trajectories, maps, traffic lights, etc. |
Challenges | Future Research Directions | Specific Techniques |
---|---|---|
Complex Interactions | Interactive Game Theory & Embodied Intelligence | Hierarchical frameworks, MARL, IRL |
Reliance on HD Maps | Reduction & Dynamic Fusion of Maps | BEV, V2X, crowdsourcing, VLM |
Long-term Error & Uncertainty | Closed-loop Error Correction | World models, neural-symbolic systems, online re-planning |
Generalization for Corner Cases | Causal Reasoning & Simulation Migration | Causal intervention, counterfactual analysis, diffusion-based synthesis |
Real-time Requirements | Lightweight Architecture & Co-design | Model distillation, quantization, dynamic inference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Liu, Z.; Wang, B.; Li, S. A Survey of Autonomous Driving Trajectory Prediction: Methodologies, Challenges, and Future Prospects. Machines 2025, 13, 818. https://doi.org/10.3390/machines13090818
Xu M, Liu Z, Wang B, Li S. A Survey of Autonomous Driving Trajectory Prediction: Methodologies, Challenges, and Future Prospects. Machines. 2025; 13(9):818. https://doi.org/10.3390/machines13090818
Chicago/Turabian StyleXu, Miao, Zhi Liu, Bingyi Wang, and Shengyan Li. 2025. "A Survey of Autonomous Driving Trajectory Prediction: Methodologies, Challenges, and Future Prospects" Machines 13, no. 9: 818. https://doi.org/10.3390/machines13090818
APA StyleXu, M., Liu, Z., Wang, B., & Li, S. (2025). A Survey of Autonomous Driving Trajectory Prediction: Methodologies, Challenges, and Future Prospects. Machines, 13(9), 818. https://doi.org/10.3390/machines13090818