A Cutting Force Prediction Model for Corner Radius End Mills Based on the Separate-Edge-Forecast Method and BP Neural Network
Abstract
1. Introduction
2. Materials and Methods
2.1. Geometric Parameters of CREM
2.2. Establishment of Cutting Force Prediction Model
2.3. Condition of Single-Tooth Cutting
2.4. Calibration of Cutting Force Coefficients
2.5. Experimental Verification
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CREM | Corner radius end mill |
BP | Back Propagation |
AI | Artificial Intelligence |
CFRP | Carbon Fiber-Reinforced Polymer |
ZCCCT | ZHUZHOU CEMENTED CARBIDE CUTTING TOOLS |
References
- Ning, H.; Zheng, H.; Zhang, S.; Yuan, X. Milling force prediction model development for CFRP multidirectional laminates and segmented specific cutting energy analysis. Int. J. Adv. Manuf. Technol. 2021, 113, 2437–2445. [Google Scholar] [CrossRef]
- Azeem, A.; Feng, H.; Orban, P. Processing noisy cutting force data for reliable calibration of a ball-end milling force model. Measurement 2005, 38, 113–123. [Google Scholar] [CrossRef]
- Lin, S.X.; Tai, Z.J.; Hua, G.J.; Ping, W.Y.; Yuan, H. Modeling and Simulation of Milling Force in Virtual Numerical Control Milling Process. Key Eng. Mater. 2008, 392–394, 697–702. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Gao, F.; Wu, K.; Yin, K.; He, P.; Xu, Y. Milling-Force Prediction Model for 304 Stainless Steel Considering Tool Wear. Machines 2025, 13, 72. [Google Scholar] [CrossRef]
- Zhu, S.; Zhao, M.; Mao, J.; Liang, S. A Ti-6Al-4V Milling Force Prediction Model Based on the Taylor Factor Model and Microstructure Evolution of the Milling Surface. Micromachines 2022, 13, 1618. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Yan, Z.; Wang, W.; Yu, C.; Zhu, X. Five-axis Micro-milling Force Prediction of Ball End Milling Cutter Considering Tool Size Effect and Tool Runout. Tool Eng. 2024, 58, 58–65. [Google Scholar] [CrossRef]
- Wei, Z.; Guo, M.; Wang, M.; Li, S.; Wang, J. Prediction of cutting force for ball end mill in sculptured surface based on analytic model of CWE and ICCE. Mach. Sci. Technol. 2019, 23, 688–711. [Google Scholar] [CrossRef]
- Sela, A.; Arrieta, I.; Soriano, D.; Aristimuño, P.; Medina-Clavijo, B.; Arrazola, P.J. A mechanistic model to predict cutting force on orthogonal machining of Aluminum 7475-T7351 considering the edge radius. Procedia CIRP 2019, 82, 32–36. [Google Scholar] [CrossRef]
- Su, X.; Wang, G.; Yu, J.; Jiang, F.; Li, J.; Rong, Y. Predictive model of milling force for complex profile milling. Int. J. Adv. Manuf. Technol. 2016, 87, 1653–1662. [Google Scholar] [CrossRef]
- Srinivasa, Y.V.; Shunmugam, M.S. Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison. Int. J. Mach. Tools Manuf. 2013, 67, 18–27. [Google Scholar] [CrossRef]
- Matsumura, T.; Shimada, M.; Teramoto, K.; Usui, A.E. Predictive Cutting Force Model and Cutting Force Chart for Milling with Cutter Axis Inclination. Int. J. Autom. Technol. 2013, 7, 30–38. [Google Scholar] [CrossRef]
- Liu, C.; Ren, J.; Zhang, Y.; Shi, K. A cutting force prediction model for UD-CFRP and MD-CFRP milling based on fracture mechanisms and mechanical properties. Compos. Part A 2025, 194, 108892. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, J.; Tang, X.; Li, A.; Li, J. Milling force prediction in titanium alloy thin-walled components side milling based on Tri-Dexel model with comprehensive consideration of tool runout and workpiece deflection. J. Manuf. Process. 2025, 141, 1211–1234. [Google Scholar] [CrossRef]
- Sun, S.; Yue, C.; Liu, X.; Chen, Z.; Lu, J. An efficient calculation method of milling force. Int. J. Adv. Manuf. Technol. 2025, 137, 1339–1362. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, S.; Xu, R.; Huang, L.; Sun, Z. An investigation on subsurface generation in ultra-precision milling of nickel with multiscale crystal plasticity FE model. J. Manuf. Process. 2025, 141, 815–828. [Google Scholar] [CrossRef]
- Qiao, S.; Feng, C.; Wang, G.; Liu, T.; Singh, J. Two-Dimensional Finite Element Analysis and Cutting Force Model for the Cutting of Circular Steel Bars Using Negative Rake Angle Cutters: Accounting for Chip Accumulation Effects. Materials 2025, 18, 1339. [Google Scholar] [CrossRef]
- Timothy, N.; Michael, G.; Jaydeep, K.; Jarred, H.; Ryan, C.; Tony, S. Propagation of Johnson-Cook flow stress model uncertainty to milling force uncertainty using finite element analysis and time domain simulation. Procedia Manuf. 2021, 53, 223–235. [Google Scholar] [CrossRef]
- Pal, S.; Velay, X.; Saleem, W. Investigating the Impact of Declination Angle on the Side Milling Process of Additively Manufactured Ti6Al4V Using a 3D Milling Finite Element Model. Eng. Proc. 2024, 65, 1. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.; Chen, C.; Su, L.; Zheng, Q. Influence of Micro-texture Parameters on Bone Drilling Force and Torque: A Finite Element Model. IOP Conf. Ser. Mater. Sci. Eng. 2019, 470, 012026. [Google Scholar] [CrossRef]
- Jagadesh, T.; Samuel, G.L. Mechanistic and Finite Element Model for Prediction of Cutting Forces During Micro-Turning of Titanium Alloy. Mach. Sci. Technol. 2015, 19, 593–629. [Google Scholar] [CrossRef]
- Dai, Y.; Zheng, X.; Chen, X.; Yu, J. A prediction model of milling force for aviation 7050 aluminum alloy based on improved RBF neural network. Int. J. Adv. Manuf. Technol. 2020, 110, 2493–2501. [Google Scholar] [CrossRef]
- Wang, J.; Zou, B.; Liu, M.; Li, Y.; Ding, H.; Xue, K. Milling force prediction model based on transfer learning and neural network. J. Intell. Manuf. 2020, 32, 947–956. [Google Scholar] [CrossRef]
- Liu, L.; Qi, W.; Liu, T. Research on Milling Force Prediction Model Based on Improved Particle Swarm Optimization Algorithm. J. Phys. Conf. Ser. 2019, 1187, 032093. [Google Scholar] [CrossRef]
- Wu, J.; Yin, N.; Lv, L.; Mai, Q. Research on Prediction Model of High-Speed Milling Force Based on GWO-ELM. Aerosp. Mater. Technol. 2024, 54, 24–30. [Google Scholar] [CrossRef]
- Hu, S.S.; Chen, C.G.; Hu, Y.N.; Zheng, D.R. Predicted Model of Cutting Force for Single Diamond Fast Milling Hard-Brittle Materials. Adv. Mater. Res. 2013, 797, 246–251. [Google Scholar] [CrossRef]
- Bian, H.; Fang, C. Improved random forest for titanium alloy milling force prediction based on finite element-driven. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 688. [Google Scholar] [CrossRef]
- Peng, D.; Li, H.; Dai, Y.; Wang, Z.; Ou, J. Prediction of milling force based on spindle current signal by neural networks. Measurement 2022, 205, 112153. [Google Scholar] [CrossRef]
- Kawasaki, K. High-Speed Milling of Hardened AMS 6260 Alloy Using Radius End Mill (Effect of Cutting Conditions on Flank Wear and Surface Roughness). Key Eng. Mater. 2024, 985, 25–30. [Google Scholar] [CrossRef]
- Chen, T.; Liu, J.; Liu, G.; Xiao, H.; Li, C.; Liu, X. Experimental Study on Titanium Alloy Cutting Property and Wear Mechanism with Circular-arc Milling Cutters. Chin. J. Mech. Eng. 2023, 36, 234–244. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, T. Study on cutting performance in ultrasonic-assisted milling of titanium alloy with circular-arc milling cutters. Int. J. Adv. Manuf. Technol. 2022, 120, 415–425. [Google Scholar] [CrossRef]
- Qi, S.; Li, J.; Zheng, S.; Xu, J.; Sun, Y. Instantaneous Milling Force Modeling and Coefficient Calibration Method of Variable Helical Circular-arc End Mills with Unequal Rake Angle. China Mech. Eng. 2025, 36, 681–687+696. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuo, X.; Wei, J.; Liang, B.; Jiang, L. Cutting Force Algorithm Based on Correction of Arc End Mill Helix Angle Parameter. Tool Eng. 2025, 59, 71–77. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, Z.; Zhu, Z.; Chen, C.; Xie, L. Online identification method for milling force coefficients considering cutter orientation. Aeronaut. Manuf. Technol. 2025, 68, 48–57. [Google Scholar] [CrossRef]
- Li, S.; Zhan, D.; Sun, S.; Sun, Y. Dynamics modeling and simultaneous identification of force coefficients for variable pitch corner radius cutter milling considering process damping and cutter runout. Int. J. Adv. Manuf. Technol. 2024, 130, 2877–2898. [Google Scholar] [CrossRef]
- Shi, Z.; Li, C.; Liu, D.; Zhang, Y.; Qin, A.; Cao, H.; Chen, Y. Instantaneous Milling Force Model and Verification of Unequal Helix Angle End Mill. J. Mech. Eng. 2024, 60, 393–406. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, B.; Zhang, M.; Jiang, Y.; Zhang, Y. A separate-edge force coefficients’ calibration method using specific condition for cutters with variable helix and pitch angles combining the runout effect. Int. J. Adv. Manuf. Technol. 2017, 93, 1737–1749. [Google Scholar] [CrossRef]
- Ozturk, E.; Ozkirimli, O.; Gibbons, T.; Saibi, M.; Turner, S. Prediction of effect of helix angle on cutting force coefficients for design of new tools. CIRP Ann.-Manuf. Technol. 2016, 65, 125–128. [Google Scholar] [CrossRef]
Diameter (mm) | Number of Edges | Helix Angle (°) | Corner Radius (mm) |
---|---|---|---|
10 | 3 | 30 | 1 |
Test Number | Type | Spindle Speed (r/min) | Feed Per Tooth (mm/z) | Axial Cutting Depth (mm) |
---|---|---|---|---|
1 | Side milling | 1910 | 0.07 | 1 |
2 | 1910 | 0.07 | 2 | |
3 | 1910 | 0.03 | 4 | |
4 | 3185 | 0.03 | 2 | |
5 | 1910 | 0.05 | 2 | |
6 | 1910 | 0.03 | 2 |
Equipment | Manufacturers |
---|---|
CREM | ZCCCT Company Limited, Zhuzhou, China |
Rotary dynamometer | Kistler Company Limited, Winterthur, Switzerland |
Charge amplifier | Kistler Company Limited, Winterthur, Switzerland |
Data acquisition card | Kistler Company Limited, Winterthur, Switzerland |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Hu, J.; Jin, C.; Liu, W. A Cutting Force Prediction Model for Corner Radius End Mills Based on the Separate-Edge-Forecast Method and BP Neural Network. Machines 2025, 13, 806. https://doi.org/10.3390/machines13090806
Gao Z, Hu J, Jin C, Liu W. A Cutting Force Prediction Model for Corner Radius End Mills Based on the Separate-Edge-Forecast Method and BP Neural Network. Machines. 2025; 13(9):806. https://doi.org/10.3390/machines13090806
Chicago/Turabian StyleGao, Zhuli, Jinyuan Hu, Chengzhe Jin, and Wei Liu. 2025. "A Cutting Force Prediction Model for Corner Radius End Mills Based on the Separate-Edge-Forecast Method and BP Neural Network" Machines 13, no. 9: 806. https://doi.org/10.3390/machines13090806
APA StyleGao, Z., Hu, J., Jin, C., & Liu, W. (2025). A Cutting Force Prediction Model for Corner Radius End Mills Based on the Separate-Edge-Forecast Method and BP Neural Network. Machines, 13(9), 806. https://doi.org/10.3390/machines13090806