A Data-Driven Fault Diagnosis Method for Marine Steam Turbine Condensate System Based on Deep Transfer Learning
Abstract
1. Introduction
2. Problem Description
- (1)
- The simulation model replicates the physical structure, fault modes, and operating conditions of the actual system while matching its signal sampling frequency.
- (2)
- For the simulation model, a statistically sufficient volume of labeled samples for all fault categories is available.
- (3)
- For the actual system, extreme data scarcity exists—limited labeled samples (typically <0.5% of operational data) are obtainable.
3. Methods
3.1. The High-Fidelity Physical Model of the Condensate System
3.1.1. Condenser
- (1)
- Tube side
- (2)
- Shell side
- (3)
- Exchange Wall
3.1.2. Jet Air Ejector
3.1.3. Condensate Pump
3.1.4. The System of the Condensate System
3.2. DTL-DFD Method Framework
3.3. The Fault Diagnosis Model of the Condensate System
3.4. Implementation Process
4. Experiment and Analysis
4.1. Case Description
4.2. Experimental Design
4.2.1. Fault Modes and Simulation Test Design
4.2.2. Dataset Construction and Partition Strategy
4.2.3. Algorithm Comparison and Performance Evaluation Metrics
4.3. Results and Analysis
4.3.1. Accuracy of Different Algorithms
4.3.2. Confusion Matrices of Different Algorithms Showing the Specific Diagnostic Conditions of Each Category
4.3.3. Scatter Plots of Different Algorithms Showing Specific Diagnostic Conditions of Each Category
4.3.4. Comparison of Diagnostic Results with Different Parameters
5. Conclusions
- (1)
- Overcoming small-sample constraints: Leveraging a high-fidelity DT model and full-parameter transfer from a pre-trained 1D-CNN, the method achieves reliable diagnosis even with extremely limited real fault data (<0.5% of operational data), avoiding overfitting issues of traditional approaches.
- (2)
- Enhancing cross-domain stability: Through hierarchical parameter transfer and fine-tuning, the method attains 94.34% accuracy on cross-distribution test sets—4.72% higher than state-of-the-art methods—with a low standard deviation ( = 0.5%), demonstrating strong adaptability to dynamic operating conditions.
- (3)
- Establishing critical principles for industrial applications: These findings establish three critical principles for industrial applications: (1) transfer depth should be at least 7 layers, (2) = 0.01 maximizes feature reuse, and (3) shallow transfer suffers inherent performance limitations. The resulting parameter optimization framework provides a practical reference for multi-fault, cross-domain diagnostics.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, Y.; Kim, W. Fault detection and diagnosis for variable refrigerant flow systems by using virtual sensors and deep learning. Energy Rep. 2024, 11, 471–482. [Google Scholar] [CrossRef]
- Han, X.; Liang, Y.; Zhu, E.; Bian, X. Nonlinear transient mathematical model of large-capacity synchronous condenser based on time-varying reactance parameters. IEEE Access 2023, 11, 35411–35420. [Google Scholar] [CrossRef]
- Pardo-Cely, D.; Belman-Flores, J.; Heredia-Aricapa, Y.; Rodríguez-Valderrama, D.; Morales-Fuentes, A.; Gallegos-Muñoz, A. Fault analysis in a domestic refrigerator: Fan fault, condenser fouling, and area restriction. Int. J. Refrig. 2023, 154, 290–299. [Google Scholar] [CrossRef]
- Xu, X.; Yan, X.; Yang, K.; Zhao, J.; Sheng, C.; Yuan, C. Review of condition monitoring and fault diagnosis for marine power systems. Transp. Saf. Environ. 2021, 3, 85–102. [Google Scholar] [CrossRef]
- Aldrini, J.; Chihi, I.; Sidhom, L. Fault diagnosis and self-healing for smart manufacturing: A review. J. Intell. Manuf. 2024, 35, 2441–2473. [Google Scholar] [CrossRef]
- Murmansky, B.E.; Aronson, K.E.; Brodov, Y.M. An expert system for diagnostics and estimation of steam turbine components condition. J. Phys. Conf. Ser. 2017, 891, 012279. [Google Scholar] [CrossRef]
- Xu, S. A Survey of Knowledge-Based Intelligent Fault Diagnosis Techniques. J. Phys. Conf. Ser. 2019, 1187, 032006. [Google Scholar] [CrossRef]
- Jalali, H.; Rafieian, F.; Khodaparast, H.H. Dynamic modeling and experimental verification on the rotor-armature structure of a steam turbine-generator unit. Appl. Math. Modell. 2022, 107, 802–814. [Google Scholar] [CrossRef]
- Ruan, D.; Chen, Y.; Gühmann, C.; Yan, J.; Li, Z. Dynamics Modeling of Bearing with Defect in Modelica and Application in Direct Transfer Learning from Simulation to Test Bench for Bearing Fault Diagnosis. Electronics 2022, 11, 622. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, T.; Zhou, H.; Lyu, D.; Zheng, W.; Li, X. A prognosis method for condenser fouling based on differential modeling. Energies 2023, 16, 5961. [Google Scholar] [CrossRef]
- Watanabe, Y.; Takahashi, T.; Suzuki, K. Dynamic simulation of an oxygen-hydrogen combustion turbine system using Modelica. In Proceedings of the Modelica Conferences, Tokyo, Japan, 24–25 November 2022; pp. 15–24. [Google Scholar]
- Liu, Z.; Lang, Z.Q.; Gui, Y.; Zhu, Y.P.; Laalej, H. Digital twin-based anomaly detection for real-time tool condition monitoring in machining. J. Manuf. Syst. 2024, 75, 163–173. [Google Scholar] [CrossRef]
- Xie, J.L.; Shi, W.F.; Xue, T.; Liu, Y.H. High-resistance connection fault diagnosis in ship electric propulsion system using Res-CBDNN. J. Mar. Sci. Eng. 2024, 12, 583. [Google Scholar] [CrossRef]
- Attallah, O.; Ibrahim, R.A.; Zakzouk, N.E. A lightweight deep learning framework for transformer fault diagnosis in smart grids using multiple scale CNN features. Sci. Rep. 2025, 15, 14505. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yan, T.; Cai, W.; Yang, H.; Wan, Z. The extraction and application of fault characteristic vector for lower vacuum of condenser in 1000 MW unit. MATEC Web Conf. 2018, 175, 02003. [Google Scholar] [CrossRef]
- Tian, C.; Wang, Y.; Ma, X.; Chen, Z.; Xue, H. Chiller fault diagnosis based on automatic machine learning. Front. Energy Res. 2021, 9, 753732. [Google Scholar] [CrossRef]
- Nie, L.; Wu, R.; Ren, Y.; Tan, M. Research on fault diagnosis of HVAC systems based on the reliefF-RFECV-SVM combined model. Actuators 2023, 12, 242. [Google Scholar] [CrossRef]
- Dhini, A.; Surjandari, I.; Kusumoputro, B.; Kusiak, A. Extreme learning machine - radial basis function (ELM-RBF) networks for diagnosing faults in a steam turbine. J. Ind. Prod. Eng. 2022, 39, 572–580. [Google Scholar] [CrossRef]
- Zhang, W.; Li, R.; Zeng, T.; Sun, Q.; Kumar, S.; Ye, J.; Ji, S. Deep model based transfer and multi-task learning for biological image analysis. In Proceedings of the Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015; pp. 1475–1484. [Google Scholar] [CrossRef]
- Yang, B.; Lei, Y.; Li, X.; Roberts, C. Deep targeted transfer learning along designable adaptation trajectory for fault diagnosis across different machines. IEEE Trans. Ind. Electron. 2023, 70, 9463–9473. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Xie, Y.; Si, C.; Li, L.; Chen, Y.; Zhai, B. Fault diagnosis analysis and health management of thermal performance of multi-source data fusion equipment based on fog computing model. Therm. Sci. 2021, 25, 3337–3345. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Lu, J.; Xiao, G.; Ren, Y.; Li, W. Digital twin-driven physically constrained generative adversarial network for industrial boiler fault diagnosis. IEEE Trans. Instrum. Meas. 2025, 74, 1–15. [Google Scholar] [CrossRef]
- Chen, L.; Li, G.; Liu, J.; Liu, L.; Zhang, C.; Gao, J.; Xu, C.; Fang, X.; Yao, Z. Fault diagnosis for cross-building energy systems based on transfer learning and model interpretation. J. Build. Eng. 2024, 91, 109424. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, W.; Tao, L.; Ma, J. Transfer learning strategies for deep learning-based PHM algorithms. Appl. Sci. 2020, 10, 2361. [Google Scholar] [CrossRef]
- Solís, M.; Calvo-Valverde, L.A. Performance of deep learning models with transfer learning for multiple-step-ahead forecasts in monthly time series. Intel. Artific 2022, 25, 110–125. [Google Scholar] [CrossRef]
- Jamil, F.; Verstraeten, T.; Nowé, A.; Peeters, C.; Helsen, J. A deep boosted transfer learning method for wind turbine gearbox fault detection. Renew. Energ 2022, 197, 331–341. [Google Scholar] [CrossRef]
- Liu, Y.; Shangguan, D.; Chen, L.; Liu, X.; Yin, G.; Li, G. Multi-domain digital twin and real-time performance optimization for marine steam turbines. Symmetry 2025, 17, 689. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Ponciroli, R.; Bruck, P.; Esselman, T.C.; Rigatti, J.A.; Vilim, R.B. A digital twin approach to system-level fault detection and diagnosis for improved equipment health monitoring. Ann. Nucl. Energy 2022, 170, 109002. [Google Scholar] [CrossRef]
- Shangguan, D.; Chen, L.; Ding, J. A digital twin-based approach for the fault diagnosis and health monitoring of a complex satellite system. Symmetry 2020, 12, 1307. [Google Scholar] [CrossRef]
- Xie, R.; Chen, M.; Liu, W.; Jian, H.; Shi, Y. Digital twin technologies for turbomachinery in a life cycle perspective: A review. Sustainability 2021, 13, 2495. [Google Scholar] [CrossRef]
- Chen, C.; Liu, M.; Li, M.; Wang, Y.; Wang, C.; Yan, J. Digital twin modeling and operation optimization of the steam turbine system of thermal power plants. Energy 2024, 290, 129969. [Google Scholar] [CrossRef]
Serial No. | Fault Mode | Operating Parameters & Ranges | Fault Injection Method | No. of Conditions |
---|---|---|---|---|
F1 | Insufficient circulating water | Main steam pressure: 0.186–0.466 MPa Main steam enthalpy: 2632.16--2670.86 kJ/kg Cooling water flow: 2166 kg/s Cooling water temperature: 5–35 °C | Cooling water flow: 1500, 1000 | 180 |
F2 | Condenser copper tube blockage | Blockage coefficient: 0.03, 0.06 | 180 | |
F3 | Condenser copper tube fouling | Fouling thermal resistance: 0.005, 0.0008 | 180 | |
F4 | Air extractor fault | Air extraction coefficient: 0.5, 0 | 180 | |
F5 | Vacuum system leakage | Leaked air volume: 0.2, 0.5 | 180 |
F1 | — | ↓ | ↓ | ↑ | — | — | ↑ | — | — | ↓ | — | — |
F2 | ↓ | — | — | ↓ | ↓ | — | ↑ | — | — | ↓ | ↑ | — |
F3 | — | — | — | — | — | ↓ | — | — | ↓ | ↓ | ↑ | — |
F4 | — | — | — | — | ↓ | — | — | — | — | ↓ | — | ↑ |
F5 | — | — | — | — | — | — | — | ↓ | — | ↓ | — | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chen, L.; Shangguan, D.; Yu, C. A Data-Driven Fault Diagnosis Method for Marine Steam Turbine Condensate System Based on Deep Transfer Learning. Machines 2025, 13, 708. https://doi.org/10.3390/machines13080708
Liu Y, Chen L, Shangguan D, Yu C. A Data-Driven Fault Diagnosis Method for Marine Steam Turbine Condensate System Based on Deep Transfer Learning. Machines. 2025; 13(8):708. https://doi.org/10.3390/machines13080708
Chicago/Turabian StyleLiu, Yuhui, Liping Chen, Duansen Shangguan, and Chengcheng Yu. 2025. "A Data-Driven Fault Diagnosis Method for Marine Steam Turbine Condensate System Based on Deep Transfer Learning" Machines 13, no. 8: 708. https://doi.org/10.3390/machines13080708
APA StyleLiu, Y., Chen, L., Shangguan, D., & Yu, C. (2025). A Data-Driven Fault Diagnosis Method for Marine Steam Turbine Condensate System Based on Deep Transfer Learning. Machines, 13(8), 708. https://doi.org/10.3390/machines13080708