DGMN-MISABO: A Physics-Informed Degradation and Optimization Framework for Realistic Synthetic Droplet Image Generation in Inkjet Printing
Abstract
1. Introduction
2. Materials and Methods
2.1. Physics-Informed DGMN Model of Droplet Image
2.2. SABO Algorithm
2.3. The Proposed MISABO Algorithm
2.3.1. Sobol Sequence Initialization
2.3.2. Lens Opposition-Based Learning
2.3.3. DLH Search Strategy
2.3.4. MISABO Algorithm Flow
Algorithm 1 MISABO Algorithm |
1: Define the boundaries for D dimensions |
2: Implement Sobel Sequence Initialization |
3: while do |
4: Calculate the fitness of each |
5: for to N do |
6: Generate the new SABO candidate by [51] |
7: Check the bounds |
8: Apply SABO selection and get |
9: Apply LensOBL operator by Equations (7) and (9) |
10: Check the bounds |
11: Apply LensOBL selection by Equation (10) |
12: Compute the neighborhood radius |
13: Construct the neighborhood of |
14: for to D do |
15: Implement DLH search by Equation (12) |
16: end for |
17: Check the bounds |
18: Apply DLH selection by Equation (13) |
19: end for |
20: Select the fittest agent from X as current position |
21: |
22: end while |
2.4. Comparative Evaluation on Benchmark Functions
2.5. Synthetic Droplet Image Generation Experiments
2.5.1. Experimental Setup
2.5.2. Metrics for Synthetic Image Quality Assessment
2.6. Ablation Study on DGMN Components and MISABO Strategies
3. Results and Discussion
3.1. Results of MISABO on Benchmark Functions
3.2. Performance of Synthetic Droplet Image Generation
3.3. Results of the Ablation Study on DGMN and MISABO
3.3.1. Ablation Analysis of the DGMN Model
3.3.2. Effectiveness of Integrated Strategies in MISABO
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gather, M.C.; Reineke, S. Recent advances in light outcoupling from white organic light-emitting diodes. J. Photonics Energy 2015, 5, 057607. [Google Scholar] [CrossRef]
- Kim, K.; Kim, G.; Lee, B.R.; Ji, S.; Kim, S.Y.; An, B.W.; Song, M.H.; Park, J.U. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes. Nanoscale 2015, 7, 13410–13415. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Y.; Zhu, Y.; Ma, F.; Feng, C.; Yu, Y.; Hu, H.; Li, F. Efficient inkjet-printed blue OLED with boosted charge transport using host doping for application in pixelated display. Opt. Mater. 2020, 101, 109755. [Google Scholar] [CrossRef]
- Hu, Z.; Yin, Y.; Ali, M.U.; Peng, W.; Zhang, S.; Li, D.; Zou, T.; Li, Y.; Jiao, S.; Chen, S.j. Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays. Nanoscale 2020, 12, 2103–2110. [Google Scholar] [CrossRef]
- Yang, H.; Song, K.; Mao, F.; Yin, Z. Autolabeling-enhanced active learning for cost-efficient surface defect visual classification. IEEE Trans. Instrum. Meas. 2020, 70, 1–15. [Google Scholar] [CrossRef]
- Psarommatis, F.; Sousa, J.; Mendonça, J.P.; Kiritsis, D. Zero-defect manufacturing the approach for higher manufacturing sustainability in the era of industry 4.0: A position paper. Int. J. Prod. Res. 2022, 60, 73–91. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, J.; Chen, W.; Yue, X.; Zhao, Z.; Yin, Z. Intelligent path planning algorithm system for printed display manufacturing using graph convolutional neural network and reinforcement learning. J. Manuf. Syst. 2025, 79, 73–85. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, J.; Yang, H.; Yin, Z. Accurate stereo-vision-based flying droplet volume measurement method. IEEE Trans. Instrum. Meas. 2021, 71, 5000116. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, J.-k.; Yue, X.; Xiong, J.-k.; Xiong, J.-c.; Gao, G.-x. Forming control method of inkjet printing OLED emitting layer pixel pit film. Chin. J. Liq. Cryst. Displays 2022, 37, 1420–1429. [Google Scholar] [CrossRef]
- Yue, X.; Chen, J.; Li, Y.; Li, X.; Zhu, H.; Yin, Z. Intelligent control system for droplet volume in inkjet printing based on stochastic state transition soft actor–critic DRL algorithm. J. Manuf. Syst. 2023, 68, 455–464. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, H.; Chen, J.; Yin, Z. Multi-scale conditional diffusion model for deposited droplet volume measurement in inkjet printing manufacturing. J. Manuf. Syst. 2023, 71, 595–608. [Google Scholar] [CrossRef]
- Park, S.; Oh, J.H. A novel vision-based approach for high-speed jetting status monitoring of a multi-nozzle inkjet head. J. Manuf. Processes 2025, 150, 670–681. [Google Scholar] [CrossRef]
- Yue, X.; Chen, J.; Yang, H.; Li, X.; Xiong, J.; Yin, Z. Multinozzle Droplet Volume Distribution Control in Inkjet Printing Based on Multiagent Soft Actor–Critic Network. IEEE/ASME Trans. Mechatron. 2024, 30, 447–457. [Google Scholar] [CrossRef]
- Qiao, H.; Chen, J.; Huang, X. A Survey of Brain-Inspired Intelligent Robots: Integration of Vision, Decision, Motion Control, and Musculoskeletal Systems. IEEE Trans. Cybern. 2022, 52, 11267–11280. [Google Scholar] [CrossRef]
- Choi, B.S.; Kim, S.H.; Lee, J.; Seong, D.; Lee, J.; Lee, J.; Chang, S.; Park, J.; Lee, S.J.; Shin, J.K. Effects of aperture diameter on image blur of CMOS image sensor with pixel apertures. IEEE Trans. Instrum. Meas. 2019, 68, 1382–1388. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, J.; Yang, H.; Yin, Z. Prior Guided Multi-Scale Dynamic Deblurring Network for Diffraction Image Restoration in Droplet Measurement. IEEE Trans. Instrum. Meas. 2023, 73, 5004814. [Google Scholar]
- Lin, X.; Ren, C.; Liu, X.; Huang, J.; Lei, Y. Unsupervised image denoising in real-world scenarios via self-collaboration parallel generative adversarial branches. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–3 October 2023; pp. 12642–12652. [Google Scholar]
- Liu, Q.; Yang, H.; Chen, J.; Yin, Z. Multiframe super-resolution with dual pyramid multiattention network for droplet measurement. IEEE Trans. Instrum. Meas. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Agustsson, E.; Timofte, R. Ntire 2017 challenge on single image super-resolution: Dataset and study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 126–135. [Google Scholar]
- Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse-representations. In Proceedings of the Curves and Surfaces: 7th International Conference, Avignon, France, 24–30 June 2010; Revised Selected Papers 7. Springer: Berlin/Heidelberg, Germany, 2010; pp. 711–730. [Google Scholar]
- Hendrycks, D.; Dietterich, T. Benchmarking neural network robustness to common corruptions and perturbations. arXiv 2019, arXiv:1903.12261. [Google Scholar] [CrossRef]
- Li, S.; Zhang, G.; Luo, Z.; Liu, J. DFAN: Dual Feature Aggregation Network for Lightweight Image Super-Resolution. Wirel. Commun. Mob. Comput. 2022, 2022, 8116846. [Google Scholar] [CrossRef]
- Luo, Z.; Huang, Y.; Li, S.; Wang, L.; Tan, T. Efficient super resolution by recursive aggregation. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 8592–8599. [Google Scholar]
- Bell-Kligler, S.; Shocher, A.; Irani, M. Blind super-resolution kernel estimation using an internal-gan. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Zhang, L. Learning a single convolutional super-resolution network for multiple degradations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3262–3271. [Google Scholar]
- Gu, J.; Lu, H.; Zuo, W.; Dong, C. Blind super-resolution with iterative kernel correction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1604–1613. [Google Scholar]
- Huang, Y.; Li, S.; Wang, L.; Tan, T. Unfolding the alternating optimization for blind super resolution. Adv. Neural Inf. Process. Syst. 2020, 33, 5632–5643. [Google Scholar]
- Li, P.; Liang, J.; Zhang, M. A degradation model for simultaneous brightness and sharpness enhancement of low-light image. Signal Process. 2021, 189, 108298. [Google Scholar] [CrossRef]
- Fritsche, M.; Gu, S.; Timofte, R. Frequency separation for real-world super-resolution. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3599–3608. [Google Scholar]
- Han, C.; Hayashi, H.; Rundo, L.; Araki, R.; Shimoda, W.; Muramatsu, S.; Furukawa, Y.; Mauri, G.; Nakayama, H. GAN-based synthetic brain MR image generation. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 734–738. [Google Scholar]
- Mirjalili, S.; Mirjalili, S. Genetic algorithm. In Evolutionary Algorithms and Neural Networks: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 43–55. [Google Scholar]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Fister, I.; Fister, I., Jr.; Yang, X.S.; Brest, J. A comprehensive review of firefly algorithms. Swarm Evol. Comput. 2013, 13, 34–46. [Google Scholar] [CrossRef]
- Yuen, M.C.; Ng, S.C.; Leung, M.F.; Che, H. A metaheuristic-based framework for index tracking with practical constraints. Complex Intell. Syst. 2022, 8, 4571–4586. [Google Scholar] [CrossRef]
- Rezk, H.; Fathy, A.; Aly, M.; Ibrahim, M.N. Energy Management Control Strategy for Renewable Energy System Based on Spotted Hyena Optimizer. Comput. Mater. Contin. 2021, 67, 2271–2281. [Google Scholar] [CrossRef]
- Abderazek, H.; Yildiz, A.R.; Mirjalili, S. Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism. Knowl.-Based Syst. 2020, 191, 105237. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Chang, V.; Mohamed, R. HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images. Appl. Soft Comput. 2020, 95, 106642. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Malik, O. Optimal sizing and placement of capacitor banks and distributed generation in distribution systems using spring search algorithm. Int. J. Emerg. Electr. Power Syst. 2020, 21, 20190217. [Google Scholar] [CrossRef]
- Dehbozorgi, S.; Ehsanifar, A.; Montazeri, Z.; Dehghani, M.; Seifi, A. Line loss reduction and voltage profile improvement in radial distribution networks using battery energy storage system. In Proceedings of the 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, Iran, 22 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 215–219. [Google Scholar]
- Bouaraki, M.; Recioui, A. Optimal placement of power factor correction capacitors in power systems using Teaching Learning Based Optimization. Alger. J. Signals Syst. 2017, 2, 102–109. [Google Scholar] [CrossRef]
- El-Kenawy, E.S.M.; Mirjalili, S.; Ibrahim, A.; Alrahmawy, M.; El-Said, M.; Zaki, R.M.; Eid, M.M. Advanced meta-heuristics, convolutional neural networks, and feature selectors for efficient COVID-19 X-ray chest image classification. IEEE Access 2021, 9, 36019–36037. [Google Scholar] [CrossRef]
- Bourouis, S.; Band, S.S.; Mosavi, A.; Agrawal, S.; Hamdi, M. Meta-heuristic algorithm-tuned neural network for breast cancer diagnosis using ultrasound images. Front. Oncol. 2022, 12, 834028. [Google Scholar]
- Chandra, M.A.; Bedi, S. Survey on SVM and their application in image classification. Int. J. Inf. Technol. 2021, 13, 1–11. [Google Scholar] [CrossRef]
- Canayaz, M. MH-COVIDNet: Diagnosis of COVID-19 using deep neural networks and meta-heuristic-based feature selection on X-ray images. Biomed. Signal Process. Control 2021, 64, 102257. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Zamani, H.; Bahreininejad, A. GGWO: Gaze cues learning-based grey wolf optimizer and its applications for solving engineering problems. J. Comput. Sci. 2022, 61, 101636. [Google Scholar] [CrossRef]
- Hu, J.; Chen, H.; Heidari, A.A.; Wang, M.; Zhang, X.; Chen, Y.; Pan, Z. Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection. Knowl.-Based Syst. 2021, 213, 106684. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst. Appl. 2021, 166, 113917. [Google Scholar] [CrossRef]
- Adam, S.P.; Alexandropoulos, S.A.N.; Pardalos, P.M.; Vrahatis, M.N. No free lunch theorem: A review. In Approximation and Optimization: Algorithms, Complexity and Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 57–82. [Google Scholar]
- Moustafa, G.; Tolba, M.A.; El-Rifaie, A.M.; Ginidi, A.; Shaheen, A.M.; Abid, S. A Subtraction-Average-Based Optimizer for Solving Engineering Problems with Applications on TCSC Allocation in Power Systems. Biomimetics 2023, 8, 332. [Google Scholar] [CrossRef]
- Sebastian, B.; Dirk, J.; Gregor P, H. Sampling Based on Sobol’ Sequences for Monte Carlo Techniques Applied to Building Simulations. In Proceedings of the Building Simulation 2011: 12th Conference of IBPSA, Sydney, Australia, 14–16 November 2011. [Google Scholar]
- Yu, F.; Guan, J.; Wu, H.; Chen, Y.; Xia, X. Lens imaging opposition-based learning for differential evolution with cauchy perturbation. Appl. Soft Comput. 2024, 152, 111211. [Google Scholar] [CrossRef]
- Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; Volume 1, pp. 695–701. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Gomes, G.F.; da Cunha, S.S.; Ancelotti, A.C. A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates. Eng. Comput. 2019, 35, 619–626. [Google Scholar] [CrossRef]
- Tomotake, A. Technology of Konica Minolta’s Inkjet Printhead. Inkjet Print. Ind. Mater. Technol. Syst. Appl. 2022, 1, 503–521. [Google Scholar]
- Kwon, B.H.; Joo, C.W.; Cho, H.; Kang, C.m.; Yang, J.H.; Shin, J.W.; Kim, G.H.; Choi, S.; Nam, S.; Kim, K.; et al. Organic/inorganic hybrid thin-film encapsulation using inkjet printing and PEALD for industrial large-area process suitability and flexible OLED application. ACS Appl. Mater. Interfaces 2021, 13, 55391–55402. [Google Scholar] [CrossRef]
- Gao, Y.; Kang, C.; Prodanov, M.F.; Vashchenko, V.V.; Srivastava, A.K. Inkjet-Printed, Flexible Full-Color Photoluminescence-Type Color Filters for Displays. Adv. Eng. Mater. 2022, 24, 2101553. [Google Scholar] [CrossRef]
- Ding, K.; Ma, K.; Wang, S.; Simoncelli, E.P. Image quality assessment: Unifying structure and texture similarity. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 2567–2581. [Google Scholar] [CrossRef]
Function | Range | |
---|---|---|
0 | ||
0 | ||
0 | ||
0 | ||
0 | ||
0 | ||
0 | ||
where , and | 0 |
Function | Metric | MISABO | SABO | SCA | SFO |
---|---|---|---|---|---|
F1 | mean | ||||
std | |||||
best | |||||
worst | |||||
F2 | mean | ||||
std | |||||
best | |||||
worst | |||||
F3 | mean | ||||
std | |||||
best | |||||
worst | |||||
F4 | mean | ||||
std | |||||
best | |||||
worst | |||||
F5 | mean | ||||
std | |||||
best | |||||
worst | |||||
F6 | mean | ||||
std | |||||
best | |||||
worst | |||||
F7 | mean | ||||
std | |||||
best | |||||
worst | |||||
F8 | mean | ||||
std | |||||
best | |||||
worst |
Parameter | Value Range |
---|---|
Lens Numerical Aperture (NA) | |
Diffraction kernel size | |
Diffraction kernel scale | |
Mixed Gaussian kernel size | |
Mixed Gaussian kernel sigma | |
Motion kernel size | |
Droplet flying angle |
Image | MISABO | SABO | SCA | SFO | Baseline * |
---|---|---|---|---|---|
X1 | 0.1665 | 0.1681 | 0.1669 | 0.1686 | 0.2806 |
X2 | 0.1658 | 0.1668 | 0.1664 | 0.1669 | 0.2703 |
X3 | 0.1895 | 0.1901 | 0.1905 | 0.1908 | 0.2734 |
X4 | 0.2049 | 0.2056 | 0.2060 | 0.2071 | 0.2714 |
X5 | 0.1777 | 0.1782 | 0.1784 | 0.1812 | 0.2831 |
X6 | 0.2195 | 0.2200 | 0.2211 | 0.2198 | 0.2780 |
X7 | 0.1559 | 0.1563 | 0.1566 | 0.1570 | 0.2854 |
X8 | 0.1781 | 0.1792 | 0.1785 | 0.1790 | 0.2758 |
X9 | 0.0992 | 0.1004 | 0.1016 | 0.1008 | 0.2851 |
Average | 0.1730 | 0.1739 | 0.1740 | 0.1746 | 0.2781 |
Methods | M1 | M2 | M3 | M4 | M5 | M6 (Ours) |
---|---|---|---|---|---|---|
Diffraction | ✓ | ✓ | ✓ | ✓ | ✓ | |
Defocus Blur | ✓ | ✓ | ✓ | ✓ | ✓ | |
BDDF | ✓ | ✓ | ✓ | ✓ | ||
Motion Blur | ✓ | ✓ | ||||
Adaptive Noise | ✓ | ✓ | ||||
DISTS | 0.2308 | 0.2245 | 0.1905/0.2781 * | 0.1884 | 0.1771 | 0.1730 |
Methods | V1 | V2 | V3 | V4 (Ours) |
---|---|---|---|---|
SABO | ✓ | ✓ | ✓ | ✓ |
Sobol | ✓ | ✓ | ✓ | |
LensOBL | ✓ | ✓ | ||
DLH | ✓ | |||
DISTS | 0.1739 | 0.1737 | 0.1733 | 0.1730 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Chen, J.; Tang, W.; Wu, J.; Ruan, J.; Yin, Z. DGMN-MISABO: A Physics-Informed Degradation and Optimization Framework for Realistic Synthetic Droplet Image Generation in Inkjet Printing. Machines 2025, 13, 657. https://doi.org/10.3390/machines13080657
Cai J, Chen J, Tang W, Wu J, Ruan J, Yin Z. DGMN-MISABO: A Physics-Informed Degradation and Optimization Framework for Realistic Synthetic Droplet Image Generation in Inkjet Printing. Machines. 2025; 13(8):657. https://doi.org/10.3390/machines13080657
Chicago/Turabian StyleCai, Jiacheng, Jiankui Chen, Wei Tang, Jinliang Wu, Jingcheng Ruan, and Zhouping Yin. 2025. "DGMN-MISABO: A Physics-Informed Degradation and Optimization Framework for Realistic Synthetic Droplet Image Generation in Inkjet Printing" Machines 13, no. 8: 657. https://doi.org/10.3390/machines13080657
APA StyleCai, J., Chen, J., Tang, W., Wu, J., Ruan, J., & Yin, Z. (2025). DGMN-MISABO: A Physics-Informed Degradation and Optimization Framework for Realistic Synthetic Droplet Image Generation in Inkjet Printing. Machines, 13(8), 657. https://doi.org/10.3390/machines13080657