A Quantum Q-Learning Fault Diagnosis Method for Intelligent Manufacturing Equipment
Abstract
1. Introduction
- It transcends the limitations of traditional fault diagnosis methodologies through quantum computing, facilitating cross-domain integration and expanding the application scope of fault diagnosis technology. This not only augments the diagnostic accuracy and minimizes misdiagnosis and missed detection, but also bolsters the reliability of the overall system.
- Leveraging the parallel processing capabilities of quantum computing, it drastically curtails the fault diagnosis time for intelligent manufacturing equipment. Consequently, the diagnostic efficiency is remarkably enhanced, aptly catering to the exigencies of time-critical systems.
- By incorporating the feedback mechanism inherent in Q-learning, the diagnosis strategy can be dynamically optimized in light of the real-time system status and past diagnostic outcomes. This actualizes the intelligence and adaptability of the diagnostic processes, endowing it with the flexibility to adeptly respond to diverse operating conditions and environmental fluctuations.
2. Principles and Algorithms of Quantum Q-Learning
2.1. Quantum Computing
2.2. Principle of Q-Learning Methodology
2.3. Algorithm of Quantum Q-Learning
3. Design of the Fault Diagnosis Algorithm Grounded in Quantum Q-Learning
3.1. Quantum Q-Learning State Space Definition
3.2. Reward Function Definition
3.3. Definition of the Action Space in Quantum Q-Learning
4. Simulation and Results
4.1. Analysis of the Failure Mechanism of CNC Machine Tools
4.2. Establishing the Experimental Simulation Platform Focused on CNC Machine Faults
4.3. Fault Diagnosis Simulation Based on Quantum Q-Learning
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dui, H.; Wang, H.; Yang, Y.; Xing, L. IoT-based mission reliability evaluation and maintenance optimization of intelligent manufacturing systems integrating human errors and heterogeneous feedstocks. Reliab. Eng. Syst. Saf. 2025, 264, 111354. [Google Scholar] [CrossRef]
- Yue, X.; Xiong, X.; Zhang, M.; Xu, X. Multi-attribute bottleneck identification method for hybrid flow shops in panel furniture intelligent manufacturing. Complex Intell. Syst. 2025, 11, 362–372. [Google Scholar] [CrossRef]
- Bozkurt, Y.; Avşar, A.; Korgancı, M.; Çam, G. A comprehensive review on friction stir additive manufacturing of various structural alloys for aerospace applications. Prog. Addit. Manuf. 2025, 1–26. [Google Scholar] [CrossRef]
- Shi, K.X.; Li, S.M.; Sun, G.W.; Feng, Z.C.; He, W. A fault diagnosis method for wireless sensor network nodes based on a belief rule base with adaptive attribute weights. Sci. Rep. 2024, 14, 4038. [Google Scholar] [CrossRef]
- Yu, Q.; Dai, L.; Xiong, R.; Chen, Z.; Zhang, X.; Shen, W. Current sensor fault diagnosis method based on an improved equivalent circuit battery model. Appl. Energy 2022, 310, 118588. [Google Scholar] [CrossRef]
- Waleed, A.; Thekra, A.; Sanghoon, S. Beauty in the Eyes of Machine: A Novel Intelligent Signal Processing-Based Approach to Explain the Brain Cognition and Perception of Beauty Using Uncertainty-Based Machine Voting. Electronics 2022, 12, 48. [Google Scholar]
- Pervin, N.; Kulkarni, A.; Adarsh, A.; Som, S. Knowledge-based Context-aware Group Recommender System for Point of Interest recommendation. Decis. Support Syst. 2025, 19, 114485–114497. [Google Scholar] [CrossRef]
- Leija, A.B.M.; Beltrán, E.R.; Mora, J.L.O.; Valadez, J.O.V. Performance of Machine Learning Algorithms in Fault Diagnosis for Manufacturing Systems: A Comparative Analysis. Processes 2025, 13, 1624. [Google Scholar] [CrossRef]
- Cao, Y.; Tang, J.; Shi, S.; Cai, D.; Zhang, L.; Xiong, P. Fault Diagnosis Techniques for Electrical Distribution Network Based on Artificial Intelligence and Signal Processing: A Review. Processes 2024, 13, 48. [Google Scholar] [CrossRef]
- Niu, M.; Ma, S.; Zhu, H.; Xu, K. Fault diagnosis of rotating machinery using a signal processing technique and lightweight model based on mechanical structural characteristics. Measurement 2025, 245, 116505. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Q.; Zhang, J.; Qin, X.; Sun, Y. A knowledge-based fault diagnosis method for rolling bearings without fault sample training. Proc. Inst. Mech. Eng. 2024, 238, 10253–10265. [Google Scholar] [CrossRef]
- Wu, K.; Nie, Y.; Wu, J.; Wang, Y. Prior knowledge-based self-supervised learning for intelligent bearing fault diagnosis with few fault samples. Meas. Sci. Technol. 2023, 34, 105104. [Google Scholar] [CrossRef]
- Senyuk, M.; Beryozkina, S.; Zicmane, I.; Safaraliev, M.; Klassen, V.; Kamalov, F. Bulk Low-Inertia Power Systems Adaptive Fault Type Classification Method Based on Machine Learning and Phasor Measurement Units Data. Mathematics 2025, 13, 316. [Google Scholar] [CrossRef]
- Zhou, Q.; Lan, L.; Wang, W.; Xu, X. Identifying effective immune biomarkers in alopecia areata diagnosis based on machine learning methods. BMC Med. Inform. Decis. Mak. 2025, 25, 23. [Google Scholar] [CrossRef]
- Mouslih, S.; Dahbi, Z.; Jakha, M.; El Asri, S.; Taj, S.; Manaut, B. Influence of an external electromagnetic field on quantum entanglement and coherence in a two-qubit graphene system. Phys. Scr. 2025, 100, 035104. [Google Scholar] [CrossRef]
- Kapourniotis, T.; Kashefi, E.; Leichtle, D.; Music, L.; Ollivier, H. Asymmetric secure multi-party quantum computation with weak clients against dishonest majority. Quantum Sci. Technol. 2025, 10, 025015. [Google Scholar] [CrossRef]
- Islam, K.T.; Mahmud, S. In-silico exploring pathway and mechanism-based therapeutics for allergic rhinitis: Network pharmacology, molecular docking, ADMET, quantum chemistry and machine learning based QSAR approaches. Comput. Biol. Med. 2025, 187, 109754. [Google Scholar] [CrossRef]
- Liu, Y. Superconducting quantum computing optimization based on multi-objective deep Q-learning. Sci. Rep. 2025, 15, 3828. [Google Scholar] [CrossRef]
- Erdman, P.A.; Andolina, G.M.; Giovannetti, V.; Noé, F. Q-learning Optimization of the Charging of a Dicke Quantum Battery. Phys. Rev. Lett. 2024, 133, 243602. [Google Scholar] [CrossRef]
- Barbosa, D.; Gruenwald, L.; D’Orazio, L.; Bernardino, J. QRLIT: Quantum Q-learning for Database Index Tuning. Future Internet 2024, 16, 439. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, A.; Wang, Q.; Hu, Y.; Fang, F.; Cheng, L. Quantum Q-learning for real-time optimization in Electric Vehicle charging systems. Appl. Energy 2025, 383, 125279. [Google Scholar] [CrossRef]
- Sgroi, S.; Zicari, G.; Imparato, A.; Paternostro, M. A Q-learning approach to the design of quantum chains for optimal energy and state transfer. Mach. Learn. Sci. Technol. 2025, 6, 015012. [Google Scholar] [CrossRef]
- Sinha, A.; Gupta, S.; Pandey, S.K. Quantum Information Splitting of An Arbitrary k-qubit Information Among n-agents Using Greenberger-Horne-Zeilinger States. Int. J. Theor. Phys. 2025, 64, 44. [Google Scholar] [CrossRef]
- DiVincenzo, D.P. Thirty years of quantum computing. Quantum Sci. Technol. 2025, 10, 030501. [Google Scholar] [CrossRef]
- Imtiaz, F.; Farooque, A.A.; Randhawa, G.S.; Wang, X.; Esau, T.J.; Garmdareh, S.E.H.; Acharya, B. Optimizing potato yield mapping and prediction: Integrating satellite-based remote sensing and machine learning for sustainable agriculture. Comput. Electron. Agric. 2025, 237, 110636. [Google Scholar] [CrossRef]
- Liu, Z.; Bao, H.; Xue, S.; Du, J. Fuzzy Neural Network Q-Learning Method for Model Disturbance Change: A Deployable Antenna Panel Application. Int. J. Aerosp. Eng. 2019, 2019, 6745045. [Google Scholar] [CrossRef]
- Lee, S.; Shim, J.; Kim, H.H.; Yun, N.; Son, M.; Cho, K.H. Optimizing capacitive deionization operation using dynamic modeling and Q-learning. Desalination 2025, 602, 118626. [Google Scholar] [CrossRef]
Fault Category | Predicted Fault 1 | Predicted Fault 2 | … | Predicted Fault n | Predicted Fault-Free |
---|---|---|---|---|---|
Fault1 | TP1 | FP12 | … | FP1n | FP1 |
Fault2 | FP21 | TP2 | … | FP2n | FP2 |
… | … | … | … | … | … |
Fault n | FPn1 | FPn2 | … | TPn | FPn |
Fault-free | FN1 | FN2 | … | FNn | TN |
Sensor Category | Installation Location | Monitoring Parameters | Precision |
---|---|---|---|
Strain Type Force Sensor (JLC-3) | Knife handle | Cutting force X/Y/Z component | ±0.1 N |
Acceleration Sensor (PCB 356A16) | Front end of spindle | Vibration acceleration (10 kHz) | ±0.01 g |
Current Sensor (Allegro ACS) | Servo motor | Armature Current Effective Value | ±0.5% F.S. |
Vibration Sensor (PCB 352C33) | Rear end of spindle | Vibration Acceleration (0.5 Hz–5 kHz) | ±0.01 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Deng, K.; Du, X.; Chang, Z.; Wan, T. A Quantum Q-Learning Fault Diagnosis Method for Intelligent Manufacturing Equipment. Machines 2025, 13, 629. https://doi.org/10.3390/machines13070629
Chen Y, Deng K, Du X, Chang Z, Wan T. A Quantum Q-Learning Fault Diagnosis Method for Intelligent Manufacturing Equipment. Machines. 2025; 13(7):629. https://doi.org/10.3390/machines13070629
Chicago/Turabian StyleChen, Yi, Kai Deng, Xuelin Du, Zichao Chang, and Tong Wan. 2025. "A Quantum Q-Learning Fault Diagnosis Method for Intelligent Manufacturing Equipment" Machines 13, no. 7: 629. https://doi.org/10.3390/machines13070629
APA StyleChen, Y., Deng, K., Du, X., Chang, Z., & Wan, T. (2025). A Quantum Q-Learning Fault Diagnosis Method for Intelligent Manufacturing Equipment. Machines, 13(7), 629. https://doi.org/10.3390/machines13070629