Inheriting Traditional Chinese Bone-Setting: A Framework of Closed Reduction Skill Learning and Dual-Layer Hybrid Admittance Control for a Dual-Arm Bone-Setting Robot
Abstract
1. Introduction
- (1)
- Motion/Force Synchronous Kernelized Movement Primitives with Globally Optimal Reparameterization Algorithm (GORA) trajectory alignment is extended to learn TCB-based reduction maneuvers and forces.
- (2)
- A dual-layer hybrid admittance control framework is proposed to achieve precise multi-axis force tracking under closed-chain constraints, featuring an ankle-layer adaptive fuzzy variable admittance control and a robot-layer admittance control. In particular, a fuzzy strategy is employed to dynamically adjust the coefficient in adaptive stiffness control law, thereby enhancing force tracking accuracy.
- (3)
- A dual-arm robotic bone-setting platform is developed and validated, demonstrating the effectiveness and robustness of the proposed control framework in reproducing TCB skills with high force-tracking accuracy.
2. System Model of Dual-Arm Bone-Setting Robot
2.1. Kinematic Analysis of Dual-Arm Robot
2.2. Analysis of Internal and External Force Decomposition
3. Personalized Bone-Setting Skill Imitation Learning
3.1. Demonstration Acquisition and Preprocessing
- (1)
- The integrand conforms to the defined structure.
- (2)
- The function is monotonic with and .
3.2. Probabilistic Modeling of the Demonstrations
3.3. Motion/Force Synchronous Kernelized Movement Primitive
4. Dual-Lyer Hybrid Admittance Control for Dual-Arm Bone-Setting Robot
4.1. Ankle-Layer Hybrid Admittance Controller
4.2. Robot-Layer Admittance Controller
5. Experiment and Evaluation
5.1. Experiment Setup
5.2. Trajectory Reproduction Experiment
5.3. Trajectory Generalization Experiment
5.4. Disturbance Experiment
6. Discussion
7. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhong, F.; Liu, Y.H. Integrated planning and control of robotic surgical instruments for task autonomy. Int. J. Robot. Res. 2023, 42, 504–536. [Google Scholar] [CrossRef]
- Marcus, H.J.; Ramirez, P.T.; Khan, D.Z. The IDEAL framework for surgical robotics: Development, comparative evaluation and long-term monitoring. Nat. Med. 2024, 30, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, J.; Wong, S.; Razjigaev, A. A Review on the Form and Complexity of Human–Robot Interaction in the Evolution of Autonomous Surgery. Adv. Intell. Syst. 2024, 6, 2400197. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Y.; Yuan, J.; Xu, S.; Zhang, J.; Wen, G.; Hu, X.; Yin, H. Modified Dynamic Movement Primitive-Based Closed Ankle Reduction Technique Learning and Variable Impedance Control for a Redundant Parallel Bone-Setting Robot. Machines 2025, 13, 145. [Google Scholar] [CrossRef]
- Cao, C.; Cao, T. Analysis of the influence of traditional bone setting and loosening manipulation of Traditional Chinese Medicine on sports rehabilitation after ankle operation. J. Mod. Med. 2023, 5, 4. [Google Scholar] [CrossRef]
- Zha, Q.; Xu, Z.; Yang, H.; Zhang, G.; Cai, X.; Zhang, W.; Liu, Y.; Shen, X.; Li, Y. Development of a robot-assisted reduction and rehabilitation system for distal radius fractures. Front. Bioeng. Biotechnol. 2024, 11, 1342229. [Google Scholar] [CrossRef]
- Lawson, K.A.; Ayala, A.E.; Morin, M.L.; Latt, L.D.; Wild, J.R. Republication of “Ankle fracture-dislocations: A review”. Foot Ankle Orthop. 2023, 8, 24730114231195058. [Google Scholar] [CrossRef]
- Payne, R.; Kinmont, J.C.; Moalypour, S.M. Initial management of closed fracture-dislocations of the ankle. Ann. Roy. Coll. Surg. 2004, 86, 177–181. [Google Scholar] [CrossRef]
- Li, J.; Cui, R.; Su, P.; Ma, L.; Sun, H. A computer-assisted preoperative path planning method for the parallel orthopedic robot. Machines 2022, 10, 480. [Google Scholar] [CrossRef]
- Pan, M.; Chen, Y.; Li, Z.; Liao, X.; Deng, Y.; Bian, G.B. Autonomous path planning for robot-assisted pelvic fracture closed reduction with collision avoidance. Int. J. Med. Robot. Comput. Assist. Surg. 2023, 19, e2483. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Xu, D.; Tan, M. On imitation learning of robot movement trajectories: A survey. Acta Autom. Sin. 2022, 48, 315–334. [Google Scholar]
- Cui, J.; Trinkle, J. Toward next-generation learned robot manipulation. Sci. Robot. 2021, 6, eabd9461. [Google Scholar] [CrossRef]
- Correia, A.; Alexandre, L.A. A survey of demonstration learning. Robot. Auton. Syst. 2024, 182, 104812. [Google Scholar] [CrossRef]
- Pérez-Dattari, R.; Della Santina, C.; Kober, J. PUMA: Deep metric imitation learning for stable motion primitives. Adv. Intell. Syst. 2024, 6, 2400144. [Google Scholar] [CrossRef]
- Fu, J.; Jin, Z.; Liu, A.; Zhang, W.A.; Yu, L. Non-parametric Gaussian process movement primitive with via-point constraint for effective and safe robot skill learning. Neurocomputing 2024, 589, 127711. [Google Scholar] [CrossRef]
- Sun, J.; Feng, Q.; Zhang, Y.; Ru, M.; Li, Y.; Li, T.; Zhao, C. Fruit flexible collecting trajectory planning based on manual skill imitation for grape harvesting robot. Comput. Electron. Agr. 2024, 225, 109332. [Google Scholar] [CrossRef]
- Lauretti, C.; Tamantini, C.; Zollo, L. A new dmp scaling method for robot learning by demonstration and application to the agricultural domain. IEEE Access 2024, 12, 7661–7673. [Google Scholar] [CrossRef]
- Torabi, F.; Warnell, G.; Stone, P. Behavioral cloning from observation. arXiv 2018, arXiv:1805.01954. [Google Scholar]
- Triantafyllidis, E.; Acero, F.; Liu, Z.; Li, Z. Hybrid hierarchical learning for solving complex sequential tasks using the robotic manipulation network ROMAN. Nat. Mach. Intell. 2023, 5, 991–1005. [Google Scholar] [CrossRef]
- Peng, Y.; Zeng, J.; Hu, Y.; Fang, Q.; Yin, Q. Reinforcement learning from suboptimal demonstrations based on reward relabeling. Expert Syst. Appl. 2024, 255, 124580. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Zheng, X.; Jin, J.; Huang, Y.; Zhang, J.J.; Wang, F.Y. SADRL: Merging human experience with machine intelligence via supervised assisted deep reinforcement learning. Neurocomputing 2022, 467, 300–309. [Google Scholar] [CrossRef]
- Saveriano, M.; Abu-Dakka, F.J.; Kramberger, A.; Peternel, L. Dynamic movement primitives in robotics: A tutorial survey. Int. J. Robot. Res. 2023, 42, 1133–1184. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, N.; Li, Q.; Yang, C. A trajectory and force dual-incremental robot skill learning and generalization framework using improved dynamical movement primitives and adaptive neural network control. Neurocomputing 2023, 521, 146–159. [Google Scholar] [CrossRef]
- Yue, C.; Gao, T.; Lu, L.; Lin, T.; Wu, Y. Probabilistic movement primitives based multi-task learning framework. Comput. Ind. Eng. 2024, 191, 110144. [Google Scholar] [CrossRef]
- Khansari-Zadeh, S.M.; Billard, A. Learning stable nonlinear dynamical systems with Gaussian mixture models. IEEE Trans. Robot. 2011, 27, 943–957. [Google Scholar] [CrossRef]
- Huang, Y.L.; Rozo, L.; Silverio, J.; Caldwell, D.G. Kernelized movement primitive. Int. J. Robot. Res. 2019, 38, 833–852. [Google Scholar] [CrossRef]
- Huang, Y.; Abu-Dakka, F.J.; Silvério, J.; Caldwell, D.G. Toward orientation learning and adaptation in Cartesian space. IEEE Trans. Robot. 2020, 37, 82–98. [Google Scholar] [CrossRef]
- Ruan, S.; Liu, W.; Wang, X.; Meng, X.; Chirikjian, G.S. PRIMP: Probabilistically-informed motion primitives for efficient affordance learning from demonstration. IEEE Trans. Robot. 2024, 40, 2868–2887. [Google Scholar] [CrossRef]
- Wu, H.; Xu, Z.; Yan, W.; Ou, Y.; Liao, Z.; Zhou, X. A Framework of Rehabilitation-Assisted Robot Skill Representation, Learning, and Modulation via Manifold-Mappings and Gaussian Processes. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022. [Google Scholar]
- Zou, C.; Huang, R.; Cheng, H.; Qiu, J. Learning gait models with varying walking speeds. IEEE Robot. Autom. Lett. 2020, 6, 183–190. [Google Scholar] [CrossRef]
- Liu, Z.; Ai, Q.; Liu, H.; Meng, W.; Liu, Q. Human-like trajectory planning based on postural synergistic kernelized movement primitives for robot-assisted rehabilitation. IEEE Trans. Hum.-Mach. Syst. 2024, 54, 152–161. [Google Scholar] [CrossRef]
- Pan, M.Z.; Deng, Y.W.; Li, Z.; Chen, Y.; Liao, X.L.; Bian, G.B. Dynamic multiaction recognition and expert movement mapping for closed pelvic reduction. IEEE Trans. Ind. Inf. 2022, 19, 8667–8678. [Google Scholar] [CrossRef]
- Bian, G.B.; Chen, Z.; Li, Z.; Wang, Y.; Zhang, L. Learning surgical skills under the RCM constraint from demonstrations in robot-assisted minimally invasive surgery. Expert Syst. Appl. 2023, 225, 120134. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, J.; Wang, Z.; Yang, Z.; Ren, Y.; Shi, P.; Calo, J.; Lam, K.; Purkayastha, S.; Lo, B. A step towards conditional autonomy—Robotic appendectomy. IEEE Robot. Autom. Lett. 2023, 8, 2429–2436. [Google Scholar] [CrossRef]
- Schwaner, K.L.; Iturrate, I.; Andersen, J.K.H.; Jensen, P.T.; Savarimuthu, T.R. Autonomous Bi-Manual Surgical Suturing Based on Skills Learned from Demonstration. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021. [Google Scholar]
- Su, H.; Mariani, A.; Ovur, S.E.; Menciassi, A.; Ferrigno, G.; De Momi, E. Toward teaching by demonstration for robot-assisted minimally invasive surgery. IEEE Trans. Autom. Sci. Eng. 2021, 18, 484–494. [Google Scholar] [CrossRef]
- Buchli, J.; Stulp, F.; Theodorou, E.; Schaal, S. Learning variable impedance control. Int. J. Robot. Res. 2011, 30, 820–833. [Google Scholar] [CrossRef]
- Dai, Y.; Xiang, C.; Qu, W.; Zhang, Q. A Review of End-Effector Research Based on Compliance Control. Machines 2022, 10, 100. [Google Scholar] [CrossRef]
- Haddadin, S.; Shahriari, E. Unified force-impedance control. Int. J. Robot. Res. 2024, 43, 2112–2141. [Google Scholar] [CrossRef]
- Zahedi, F.; Lee, H. Biomechanics-Based User-Adaptive Variable Impedance Control for Enhanced Physical Human–Robot Interaction Using Bayesian Optimization. Adv. Intell. Syst. 2024, 7, 2400333. [Google Scholar] [CrossRef]
- Hu, J.; Zhuang, Y.; Meng, Q.; Yu, H. Active Training Control Method for Rehabilitation Robot Based on Fuzzy Adaptive Impedance Adjustment. Machines 2023, 11, 565. [Google Scholar] [CrossRef]
- Duan, A.; Victorova, M.; Zhao, J.; Sun, Y.; Zheng, Y.; Navarro-Alarcon, D. Ultrasound-guided assistive robots for scoliosis assessment with optimization-based control and variable impedance. IEEE Robot. Autom. Lett. 2022, 7, 8106–8113. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Zhao, X.; Xie, Q.; Yang, K.; Tao, B.; Ding, H. Physical human–robot interaction based on adaptive impedance control for robotic-assisted total hip arthroplasty. IEEE-ASME Trans. Mech. 2024, 29, 4674–4686. [Google Scholar] [CrossRef]
- Zheng, G.; Lei, J.; Hu, L. Fuzzy adaptive sliding mode impedance control of fracture reduction robot. IEEE Access 2021, 9, 113653–113665. [Google Scholar] [CrossRef]
- Zheng, G.; Lei, J.; Hu, L. Adaptive variable impedance position/force tracking control of fracture reduction robot. Int. J. Med. Robot. Comp. 2023, 19, e2469. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Miao, Y.; An, M.; Wang, S.; Zhang, Y. PI²-based adaptive impedance control for gait adaption of lower limb exoskeleton. IEEE-ASME Trans. Mech. 2024, 29, 4251–4261. [Google Scholar] [CrossRef]
- Liu, W.; Wu, R.; Si, J.; Huang, H. A new robotic knee impedance control parameter optimization method facilitated by inverse reinforcement learning. IEEE Robot. Autom. Lett. 2022, 7, 10882–10889. [Google Scholar] [CrossRef]
- Fu, J.; Burzo, I.; Iovene, E.; Zhao, J.; Ferrigno, G.; De Momi, E. Optimization-based variable impedance control of robotic manipulator for medical contact tasks. IEEE Trans. Instrum. Meas. 2024, 73, 4004608. [Google Scholar] [CrossRef]
- Ren, Y.; Zhou, Z.; Xu, Z.; Yang, Y.; Zhai, G.; Leibold, M.; Ni, F.; Zhang, Z.; Buss, M.; Zheng, Y. Enabling versatility and dexterity of the dual-arm manipulators: A general framework toward universal cooperative manipulation. IEEE Trans. Robot. 2024, 40, 2024–2045. [Google Scholar] [CrossRef]
- Dio, M.; Völz, A.; Graichen, K. Cooperative Dual-Arm Control for Heavy Object Manipulation Based on Hierarchical Quadratic Programming. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023. [Google Scholar]
- Jiao, C.; Zhang, L.; Su, X.; Huang, J.; Bing, Z.; Knoll, A. Task-based compliance control for bottle screw manipulation with a dual-arm robot. IEEE Trans. Ind. Electron. 2023, 71, 1823–1831. [Google Scholar] [CrossRef]
- Wang, D.; Qiu, C.; Lian, J.; Wan, W.; Pan, Q.; Dong, Y. Cooperative control for dual-arm robots based on improved dynamic movement primitives. IEEE Trans. Ind. Electron. 2024. [Google Scholar] [CrossRef]
- Bai, W.; Wang, Z.; Cao, Q.; Yokoi, H.; Fujie, M.G.; Yeatman, E.M.; Yang, G.Z. Anthropomorphic dual-arm coordinated control for a single-port surgical robot based on dual-step optimization. IEEE Trans. Med. Robot. Bio. 2022, 4, 72–84. [Google Scholar] [CrossRef]
- Ferraguti, F.; Preda, N.; Manurung, A.; Bonfe, M.; Lambercy, O.; Gassert, R.; Muradore, R.; Fiorini, P.; Secchi, C. An energy tank-based interactive control architecture for autonomous and teleoperated robotic surgery. IEEE Trans. Robot. 2015, 31, 1073–1088. [Google Scholar] [CrossRef]
- Zhang, H.; Pang, L.; Bai, M.; Yang, J.; Zhao, J. Retinal surgical field realignment based on master-slave dual-arm surgical robot. IEEE Trans. Autom. Sci. Eng. 2023, 21, 4743–4752. [Google Scholar] [CrossRef]
- Jinjun, D.; Yahui, G.; Ming, C.; Xianzhong, D. Symmetrical adaptive variable admittance control for position/force tracking of dual-arm cooperative manipulators with unknown trajectory deviations. Robot. Cim-Int. Manuf. 2019, 57, 357–369. [Google Scholar] [CrossRef]
- Jiao, C.; Yu, L.; Su, X.; Wen, Y.; Dai, X. Adaptive hybrid impedance control for dual-arm cooperative manipulation with object uncertainties. Automatica 2022, 140, 110232. [Google Scholar] [CrossRef]
- Yan, L.; Yang, Y.; Xu, W.; Vijayakumar, S. Dual-Arm Coordinated Motion Planning and Compliance Control for Capturing Moving Objects with Large Momentum. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2019. [Google Scholar]
- Walker, I.D.; Freeman, R.A.; Marcus, S.I. Analysis of motion and internal loading of objects grasped by multiple cooperating manipulators. Int. J. Robot. Res. 1991, 10, 396–409. [Google Scholar] [CrossRef]
- Zhou, F.; Torre, F.D.L. Generalized canonical time warping. IEEE Trans. Pattern. Anal. 2016, 38, 279–294. [Google Scholar] [CrossRef]
- Mitchel, T.W.; Ruan, S.; Chirikjian, G.S. Signal Alignment for Humanoid Skeletons via the Globally Optimal Reparameterization Algorithm. In Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, 6–9 November 2018. [Google Scholar]
- Leite, A.C.; Lizarralde, F.; Hsu, L. A Cascaded-Based Hybrid Position-Force Control for Robot Manipulators with Nonnegligible Dynamics. In Proceedings of the IEEE 2010 American Control Conference (ACC), Baltimore, MD, USA, 30 June–2 July 2010. [Google Scholar]
- Ju, M.S.; Lin, C.C.K.; Lin, D.H.; Hwang, I.S.; Chen, S.M. A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot. IEEE Trans. Neur. Sys. Reh. 2005, 13, 349–358. [Google Scholar]
- Hogan, N. Impedance control: An Approach to Manipulation. In Proceedings of the IEEE 1984 American Control Conference (ACC), San Diego, CA, USA, 6–8 June 1984; pp. 304–313. [Google Scholar]
- Ott, C.; Albu-Schäffer, A.; Kugi, A.; Stramigioli, S.; Hirzinger, G. A Passivity-Based Cartesian Impedance Controller for Flexible Joint Robots—Part I: Torque Feedback and Gravity Compensation. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA), New Orleans, LA, USA, 26 April–1 May 2004; pp. 2659–2665. [Google Scholar]
- Zhu, S.; Zhao, Z.; Chen, Y.; Zhang, J.; Wang, J. Development of a Surgeon- and Patient-Friendly Orthopedic Surgical Robot. In Proceedings of the IEEE 2021 International Symposium on Medical Robotics (ISMR), Atlanta, GA, USA, 17–19 November 2021; pp. 1–6. [Google Scholar]
- Tang, P.; Hu, L.; Du, H.; Gong, M.; Zhang, L. Novel 3D hexapod computer-assisted orthopaedic surgery system for closed diaphyseal fracture reduction. Int. J. Med.Robot. Comput. Assist. Surg. 2012, 8, 17–24. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
The world frame of the system | |
The ankle frame of the system | |
The base coordinate frame of the left robot arm | |
The base coordinate frame of the right robot arm | |
The end coordinate frame of the left robot arm | |
The end coordinate frame of the right robot arm |
Symbol | Description |
---|---|
The real position, velocity, acceleration in Ankle-layer, denote the three dimensions of translational space. | |
The expected position, velocity, acceleration in Ankle-layer, denote the three dimensions of rotational space. | |
The real angle, angular velocity, angular acceleration in Ankle-layer. | |
The expected angle, angular velocity, angular acceleration in Ankle-layer. | |
The inertia, damp, and stiffness of admittance control in the translational space of Ankle-layer. | |
The inertia, damp, and stiffness of admittance control in the rotational space of Ankle-layer. | |
The real position, velocity, acceleration in Robot-layer, , represent left or right robot arm. | |
The expected position, velocity, acceleration in Robot-layer. | |
The real angle, angular velocity, angular acceleration in Robot-layer. | |
The expected angle, angular velocity, angular acceleration in Robot-layer. | |
The inertia, damp, and stiffness of admittance control in the translational space of Robot-layer. | |
The inertia, damp, and stiffness of admittance control in the rotational space of Robot-layer. |
EC | NB | NM | NS | ZO | PS | PM | PB | |
---|---|---|---|---|---|---|---|---|
E | ||||||||
NB | PB | PB | PM | PM | PS | PS | ZO | |
NM | PB | PM | PM | PS | PS | ZO | NS | |
NS | PM | PS | ZO | NS | NS | NM | NM | |
ZO | ZO | NS | NM | NP | NM | NS | ZO | |
PS | NM | NM | NS | NS | ZO | PS | PM | |
PM | NS | ZO | PS | PS | PM | PM | PB | |
PB | ZO | PS | PS | PM | PM | PB | PB |
Controller | Parameter Value | |
---|---|---|
Ankle- layer | CAC | kgN/m |
AVAC-0.05 | ||
AVAC-0.2 | ||
AVAC-0.4 | ||
AVAC-0.6 | ||
AFVAC |
KMP | DMP | |||||
---|---|---|---|---|---|---|
DTWD | FD | MSE | DTWD | FD | MSE | |
Position () | 41.443 | 3.0892 | 1.7654 | 295.31 | 30.324 | 2.1402 |
Orientation () | 88.338 | 6.4624 | 7.5686 | 834.17 | 69.045 | 18.027 |
Force | 110.06 | 8.6662 | 11.532 | 764.55 | 72.958 | 27.974 |
Torque () | 9.9070 | 0.7509 | 0.0107 | 73.319 | 7.6521 | 0.1506 |
Zha [24] | Bian [32] | Tang [67] | Zhu [66] | Ours | |
---|---|---|---|---|---|
Structure type | Single-arm | Single-arm | Parallel | Parallel | Dual-arm |
Non-invasive | √ | × | × | √ | √ |
Capacity | <50 N | <70 N | >200 N | >200 N | 70–200 N |
Ultimate angle (Anatomical axis; other two) | >60°; >60° | – | <20°; <20° | – | >60°; >40° |
Imitation learning planning | × | √ | × | × | √ |
Compliance control | × | × | × | × | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Z.; Zhang, J.; Zhang, Y.; Song, X.; Yu, Y.; Wen, G.; Yin, H. Inheriting Traditional Chinese Bone-Setting: A Framework of Closed Reduction Skill Learning and Dual-Layer Hybrid Admittance Control for a Dual-Arm Bone-Setting Robot. Machines 2025, 13, 369. https://doi.org/10.3390/machines13050369
Tan Z, Zhang J, Zhang Y, Song X, Yu Y, Wen G, Yin H. Inheriting Traditional Chinese Bone-Setting: A Framework of Closed Reduction Skill Learning and Dual-Layer Hybrid Admittance Control for a Dual-Arm Bone-Setting Robot. Machines. 2025; 13(5):369. https://doi.org/10.3390/machines13050369
Chicago/Turabian StyleTan, Zhao, Jialong Zhang, Yahui Zhang, Xu Song, Yan Yu, Guilin Wen, and Hanfeng Yin. 2025. "Inheriting Traditional Chinese Bone-Setting: A Framework of Closed Reduction Skill Learning and Dual-Layer Hybrid Admittance Control for a Dual-Arm Bone-Setting Robot" Machines 13, no. 5: 369. https://doi.org/10.3390/machines13050369
APA StyleTan, Z., Zhang, J., Zhang, Y., Song, X., Yu, Y., Wen, G., & Yin, H. (2025). Inheriting Traditional Chinese Bone-Setting: A Framework of Closed Reduction Skill Learning and Dual-Layer Hybrid Admittance Control for a Dual-Arm Bone-Setting Robot. Machines, 13(5), 369. https://doi.org/10.3390/machines13050369