End-to-End Intelligent Adaptive Grasping for Novel Objects Using an Assistive Robotic Manipulator
Abstract
:1. Introduction
2. System Hardware and Software Architecture
2.1. System Hardware
2.1.1. Manipulator
2.1.2. Sensing
2.2. Software Architecture
3. Assistive Controller Design and Implementation
3.1. Motion Control for Safe Grasping
3.2. 6-DOF Pose Estimation
3.3. Motion Control for Object Approaching
3.4. Motion Control for Robust Object Envelopment
4. HRI Framework and Adaptive UI Design
4.1. User Interface Overview
4.2. Movement Suggestion Mode: A Finite Machine-Based Design
4.3. Design of Compensations
4.3.1. Contrast Enhancement
4.3.2. Object Proximity Velocity Reduction
4.3.3. Orientation Indication
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fall, C.L.; Quevillon, F.; Blouin, M.; Latour, S.; Campeau-Lecours, A.; Gosselin, C.; Gosselin, B.A. Multimodal Adaptive Wireless Control Interface for People With Upper-Body Disabilities. IEEE Trans. Biomed. Syst. 2018, 12, 564–575. [Google Scholar] [CrossRef]
- Aronson, R.M.; Santini, T.; Kübler, T.C.; Kasneci, E.; Srinivasa, S.; Admoni, H. Eye-hand behavior in human-robot shared manipulation. In Proceedings of the HRI ’18: ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA, 5–8 March 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 4–13. [Google Scholar]
- Admoni, H.; Dragan, A.; Srinivasa, S.S.; Scassellati, B. Deliberate delays during robot-to-human handovers improve compliance with gaze communication. In Proceedings of the HRI ’14: ACM/IEEE International Conference on Human-Robot Interaction, Bielefeld, Germany, 3–6 March 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 49–56. [Google Scholar]
- Crewe, N.M.; Krause, J.S. Spinal cord injury. In Medical, Psychosocial and Vocational Aspects of Disability; Elliott and Fitzpatrick: Athens, Greece, 2009; pp. 289–304. [Google Scholar]
- Cohen, M.L.; Tulsky, D.S.; Holdnack, J.A.; Carlozzi, N.E.; Wong, A.; Magasi, S.; Heaton, R.K.; Heinemann, A.W. Cognition among community-dwelling individuals with spinal cord injury. Rehabil. Psychol. 2017, 62, 425. [Google Scholar] [CrossRef]
- Kim, D.-J.; Wang, Z.; Behal, A. Motion Segmentation and Control Design for UCF-MANUS—An Intelligent Assistive Robotic Manipulator. IEEE/ASME Trans. Mechatron. 2012, 17, 936–948. [Google Scholar] [CrossRef]
- Kim, D.-J.; Wang, Z.; Paperno, N.; Behal, A. System Design and Implementation of UCF- MANUS—An Intelligent Assistive Robotic Manipulator. IEEE/ASME Trans. Mechatron. 2014, 19, 225–237. [Google Scholar] [CrossRef]
- Jabalameli, A.; Behal, A. From Single 2D Depth Image to Gripper 6D Pose Estimation: A Fast and Robust Algorithm for Grabbing Objects in Cluttered Scenes. Robotics 2019, 8, 63. [Google Scholar] [CrossRef]
- Roberts, Y.; Jabalameli, A.; Behal, A. Faster than Real-time Surface Pose Estimation with Application to Autonomous Robotic Grasping. MDPI Robot. 2022, 11, 7. [Google Scholar] [CrossRef]
- Wang, Z.; Kim, D.-J.; Behal, A. Design of Stable Visual Servoing under Sensor and Actuator Constraints via a Lyapunov-based Approach. IEEE Trans. Control. Technol. 2012, 20, 1575–1582. [Google Scholar] [CrossRef]
- Kim, D.-J.; Lovelett, R.; Behal, A. An Empirical Study with Simulated ADL Tasks using a Vision-Guided Assistive Robot Arm. In Proceedings of the 2009 IEEE 11th International Conference on Rehabilitation Robotics, Kyoto, Japan, 23–26 June 2009; pp. 504–509. [Google Scholar]
- Tsui, K.; Yanco, H.; Kontak, D.; Beliveau, L. Development and Evaluation of a Flexible Interface for a Wheelchair Mounted Robotic Arm. In Proceedings of the 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI), Amsterdam, The Netherlands, 12–15 March 2008; pp. 105–112. [Google Scholar]
- Vu, D.; Allard, U.C.; Gosselin, C.; Routhier, F.; Gosselin, B.; Campeau-Lecours, A. Intuitive Adaptive Orientation Control of Assistive Robots for People Living with Upper Limb Disabilities. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 795–800. [Google Scholar]
- Herlant, L.V.; Holladay, R.M.; Srinivasa, S.S. Assistive teleoperation of robot arms via automatic time-optimal mode switching. In Proceedings of the 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Christchurch, New Zealand, 7–10 March 2016; pp. 35–42. [Google Scholar]
- Brose, S.W.; Weber, D.J.; Salatin, B.A.; Grindle, G.G.; Wang, H.; Cooper, R.A. Assistive robotics: Adaptive and intelligent robotic systems for assisting people with disabilities. IEEE Robot. Autom. Mag. 2010, 17, 30–41. [Google Scholar]
- Dario, P.; Guglielmelli, E.; Laschi, C. Humanoids and personal robots: Design and experiments. J. Robot. Syst. 2001, 18, 673–690. [Google Scholar] [CrossRef]
- Tadokoro, S. Disaster Robotics; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Cakmak, M.; Leitao, M. Human-Robot Interaction: An Introduction; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Sabanovic, S. Social Robots: Technological, Societal, and Ethical Aspects of Human-Robot Interaction; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Krichmar, J.L.; Wagatsuma, H. Neuromorphic and Brain-Based Robots; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Pineau, J.; Montemerlo, M.; Pollack, M.E.; Roy, N.; Thrun, S. Towards robotic assistants in nursing homes: Challenges and results. Robot. Auton. Syst. 2003, 42, 271–281. [Google Scholar] [CrossRef]
- Graf, B.; Hans, M.; Schraft, R.D. Care-O-bot II—Development of a next-generation robotic home assistant. Auton. Robot. 2004, 16, 193–205. [Google Scholar]
- Hussein, A.; Taha, A.; Khalid, M.H.; Omar, H. Assistive robotics: A review of applications and challenges. IEEE Access 2021, 9, 102509–102533. [Google Scholar]
- Feil-Seifer, D.; Matarić, M.J. Defining socially assistive robotics. In Proceedings of the 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 28 June–1 July 2005; pp. 465–468. [Google Scholar]
- Tapus, A.; Ţăpuş, C.; Matarić, M.J. User—robot personality matching and assistive robot behavior adaptation for post-stroke rehabilitation therapy. Intell. Serv. Robot. 2009, 2, 169–183. [Google Scholar]
- Fasola, J.; Matarić, M.J. Socially assistive robot exercise coach: Motivating older adults to engage in physical exercise. Auton. Robot. 2012, 33, 109–127. [Google Scholar]
- Broekens, J.; Heerink, M.; Rosendal, H. Assistive social robots in elderly care: A review. Gerontechnology 2009, 8, 94–103. [Google Scholar] [CrossRef]
- Kachouie, R.; Sedighadeli, S.; Khosla, R.; Chu, M.T. Socially assistive robots in elderly care: A mixed-method systematic literature review. Int. J. Hum.-Comput. Interact. 2014, 30, 369–393. [Google Scholar]
- Wada, K.; Shibata, T.; Saito, T.; Tanie, K. Effects of robot-assisted activity for elderly people and nurses at a day service center. Proc. IEEE 2004, 92, 1780–1788. [Google Scholar]
- Broadbent, E.; Stafford, R.; MacDonald, B. Acceptance of healthcare robots for the older population: Review and future directions. Int. J. Soc. Robot. 2009, 1, 319–330. [Google Scholar] [CrossRef]
- Krebs, H.I.; Volpe, B.T.; Aisen, M.L.; Hogan, N. Increasing productivity and quality of care: Robot-aided neuro-rehabilitation. J. Rehabil. Res. Dev. 2000, 37, 639–652. [Google Scholar]
- Lo, A.C.; Richards, P.D.; Haselkorn, L.G.; Wittenberg, J.K.; Federman, G.F.; Ringer, D.G.; Wagner, R.J.; Krebs, T.H.; Volpe, H.I.; T, B.; et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 2010, 362, 1772–1783. [Google Scholar] [CrossRef]
- Mehrholz, J.; Hädrich, A.; Platz, T.; Kugler, J.; Pohl, M. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. 2012, CD006876. [Google Scholar] [CrossRef]
- Dautenhahn, K. Socially intelligent robots: Dimensions of human–robot interaction. Philos. Trans. R. Soc. B 2007, 362, 679–704. [Google Scholar]
- Goodrich, M.A.; Schultz, A.C. Human-robot interaction: A survey. Found. Trends Hum.-Comput. Interact. 2007, 1, 203–275. [Google Scholar] [CrossRef]
- Tsui, K.M.; Desai, M.; Yanco, H.A.; Uhlik, C. Exploring use cases for robot-assisted wheelchair users. In Proceedings of the 6th ACM/IEEE International Conference Human-Robot Interaction, Lausanne, Switzerland, 6–9 March 2011; pp. 11–18. [Google Scholar]
- Esposito, R.; Conti, D.; Di Nuovo, A. Cognitive robotics to support child development: A review of current research. IEEE Trans. Cogn. Dev. Syst. 2021, 14, 36–50. [Google Scholar]
- Riek, L.D. Healthcare robotics. Commun. ACM 2017, 60, 68–78. [Google Scholar]
- Papadopoulos, I.; Koulouglioti, C.; Ali, S.; Lazzarino, R. Smart homes, artificial intelligence, and health: A review of literature. Front. Public Health 2020, 8, 138. [Google Scholar]
- Bevilacqua, R.; Felici, E.; Marcellini, F.; Cavallo, F. Social robots and older adults: A systematic review of cost-effectiveness studies. Aging Clin. Exp. Res. 2020, 32, 2413–2426. [Google Scholar]
- Mordoch, E.; Osterreicher, A.; Guse, L.; Roger, K.; Thompson, G. Use of social commitment robots in the care of elderly people with dementia: A literature review. Maturitas 2013, 74, 14–20. [Google Scholar]
- Sanders, M.; McCormick, E. Human Factors in Engineering and Design; McGraw-Hill International Editions; McGraw-Hill: Sydney, Australia, 1993. [Google Scholar]
- Stanger, C.A.; Anglin, C.; Harwin, W.S.; Romilly, D.P. Devices for Assisting Manipulation: A Summary of User Task Priorities. IEEE Trans. Rehab. Eng. 1994, 2, 256–265. [Google Scholar] [CrossRef]
- Ding, Z.; Paperno, N.; Prakash, K.; Behal, A. An Adaptive Control-Based Approach for 1-Click Gripping of Novel Objects Using a Robotic Manipulator. IEEE Tran. Control Syst. Tech. 2019, 27, 1805–1812. [Google Scholar]
- Patre, P.M.; MacKunis, W.; Makkar, C.; Dixon, W.E. Asymptotic Tracking for Uncertain Dynamic Systems via a Multilayer NN Feedforward and RISE Feedback Control Structure. IEEE Trans. Control. Syst. Technol. 2008, 16, 373–379. [Google Scholar] [CrossRef]
- Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice Hall, Inc.: Englewood Cliffs, NJ, USA, 1991. [Google Scholar]
- Available online: http://ece.ucf.edu/~abehal/AssistiveRobotics/videos/Grasping_demo.mp4 (accessed on 19 March 2025).
- Krishnaswamy, K.; Srinivas, M.; Oates, T. Survey data analysis for repositioning, transferring, and personal care robots. In Proceedings of the PETRA ’17: International Conference on Pervasive Technologies Related to Assistive Environments, Rhodes, Greece, 21–23 June 2017; ACM: New York, NY, USA, 2017. [Google Scholar]
- Kawamoto, H.; Shiraki, T.; Otsuka, T.; Sankai, Y. Meal-assistance by robot suit HAL using detection of food position with camera. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), Karon Beach, Thailand, 7–11 December 2011. [Google Scholar]
- Gallenberger, D.; Bhattacharjee, T.; Kim, Y.; Srinivasa, S.S. Transfer Depends on Acquisition: Analyzing Manipulation Strategies for Robotic Feeding. In Proceedings of the 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Daegu, Republic of Korea, 11–14 March 2019; pp. 267–276. [Google Scholar]
- Park, D.; Hoshi, Y.; Mahajan, H.P.; Kim, H.K.; Erickson, Z.; Rogers, W.A.; Kemp, C.C. Active robot-assisted feeding with a general-purpose mobile manipulator: Design, evaluation, and lessons learned. Robot. Auton. Syst. 2019, 124, 103344. [Google Scholar] [CrossRef]
- Topping, M.J.; Smith, J.K. The development of handy 1. A robotic system to assist the severely disabled. Technol. Disabil. 1999, 10, 95–105. [Google Scholar] [CrossRef]
- Sumio, I. Meal-assistance Robot “My Spoon”. J. Robot. Soc. Jpn. 2003, 21, 378–381. [Google Scholar]
Dexterity | WM | RI | PS | DP | SA | CS | ||||
---|---|---|---|---|---|---|---|---|---|---|
Finger | Wrist | Arm | Head/Neck | |||||||
One-click to approach | + | + | + | ++ | + | + | ||||
Safe Grasping | ++ | + | + | |||||||
Move Suggestion | ++ | ++ | ||||||||
Orientation Indicator | ++ | |||||||||
Object Proximity Velocity Reduction | + | ++ | ++ | ++ | ||||||
Contrast Enhancement | ++ |
Object Detection Time | Reaching the Object | Grasp and Lift | Total Time | Total Commands | |
---|---|---|---|---|---|
Manual Mode | 0 s | 24.2 ± 1.4 s | 3.9 ± 0.18 s | 28.1 ± 4.1 s | 10.6 ± 2.4 |
Move Suggestion Mode | 16 ± 1.7 s | 41.2 ± 0.9 s | 4.4 ± 0.55 s | 62 ± 2.7 s | 10 |
One-Click Mode | 14 ± 2.2 s | 16.7 ± 0.5 s | 4.1 ± 0.3 s | 34.9 ± 2.12 s | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Z.; Jabalameli, A.; Al-Mohammed, M.; Behal, A. End-to-End Intelligent Adaptive Grasping for Novel Objects Using an Assistive Robotic Manipulator. Machines 2025, 13, 275. https://doi.org/10.3390/machines13040275
Ding Z, Jabalameli A, Al-Mohammed M, Behal A. End-to-End Intelligent Adaptive Grasping for Novel Objects Using an Assistive Robotic Manipulator. Machines. 2025; 13(4):275. https://doi.org/10.3390/machines13040275
Chicago/Turabian StyleDing, Zhangchi, Amirhossein Jabalameli, Mushtaq Al-Mohammed, and Aman Behal. 2025. "End-to-End Intelligent Adaptive Grasping for Novel Objects Using an Assistive Robotic Manipulator" Machines 13, no. 4: 275. https://doi.org/10.3390/machines13040275
APA StyleDing, Z., Jabalameli, A., Al-Mohammed, M., & Behal, A. (2025). End-to-End Intelligent Adaptive Grasping for Novel Objects Using an Assistive Robotic Manipulator. Machines, 13(4), 275. https://doi.org/10.3390/machines13040275