Geometric Error Modeling of 3-DOF Planar Parallel Manipulators Using Conformal Geometric Algebra
Abstract
1. Introduction
2. Conformal Geometric Algebra
2.1. Fundamental Theory of CGA
2.2. Conformal Geometric Entities
2.3. Conformal Transformations
3. Error Modeling of PPMs Using CGA
3.1. Construction of Limb KGB
3.2. Kinematics Analysis of PPMs Using CGA
3.3. Error Modeling of PPMs
4. Case Study
4.1. Architecture of the 3-RPR PPM
4.2. 3-RPR Planar PM Limb KGB Construction
4.3. Kinematics Analysis of 3-RPR Planar PM Using CGA
4.4. Error Modeling of 3-RPR Planar PM
4.5. Simulation Verification of Error Model
- (1)
- Select the simulation calibration points, and the number of reference points should be greater than the number of error equations.
- (2)
- Set the initial kinematic error parameters and calculate the actual pose .
- (3)
- Based on the current kinematic parameters , the 3-RPR PM’s pose Pi is calculated using the CGA kinematic model.
- (4)
- Calculate the pose error and determine whether is less than the set value .
- (5)
- If the conditions are not met, then the regularization parameter identification algorithm is used to identify the error parameters, and then return to the third step to update the identified error parameters. The regularization parameter is set to 0.9.
- (6)
- When < , output the identified error parameters.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| PM | Parallel mechanism |
| PPM | Planar parallel mechanism |
| CGA | Conformal geometric algebra |
| KGB | Kinematic geometric body |
| IPNS | Inner product null space |
| OPNS | Outer product null space |
Appendix A
References
- Merlet, J.P. Parallel Robots; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 128. [Google Scholar]
- Bonev, I.A.; Zlatanov, D.; Gosselin, C.M. Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory. J. Mech. Des. 2003, 125, 573. [Google Scholar] [CrossRef]
- Roth, Z.; Mooring, B.; Ravani, B. An overview of robot calibration. IEEE J. Robot. Autom. 1987, 3, 377–385. [Google Scholar] [CrossRef]
- Mooring, B.W.; Roth, Z.S.; Driels, M.R. Fundamentals of Manipulator Calibration; Wiley: Brooklyn, NY, USA, 1991. [Google Scholar]
- Li, J.; Xie, F.G.; Liu, X.J. Geometric error modeling and sensitivity analysis of a five-axis machine tool. Int. J. Adv. Manuf. Technol. 2016, 82, 2037–2051. [Google Scholar] [CrossRef]
- Schröer, K.; Albright, S.L.; Grethlein, M. Complete, minimal and model-continuous kinematic models for robot calibration. Robot. Comput.-Integr. Manuf. 1997, 13, 73–85. [Google Scholar] [CrossRef]
- Wang, J.; Masory, O. On the accuracy of a stewart platform—Part I: The effect of manufacturing tolerances. In Proceedings of the IEEE International Conference on Robotics and Automation Los Alamitos, Atlanta, GA, USA, 2–6 May 1993; pp. 114–120. [Google Scholar]
- Hayati, S.A. Robot arm geometric link parameter estimation. In Proceedings of the 22nd IEEE Conference on Decision and Control, San Antonio, TX, USA, 14–16 December 1983; pp. 1477–1483. [Google Scholar]
- Stone, H.W. Kinematic Modeling, Identification, and Control of Robotic Manipulators; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 1987. [Google Scholar]
- Masory, O.; Wang, J.; Zhuang, H. On the accuracy of a Stewart Platform—Part II kinematic compensation and calibration. In Proceedings of the 1993 International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; pp. 725–731. [Google Scholar]
- Jiang, Y.; Li, T.M.; Wang, L.P. Chen Feifan. Kinematic error modeling and identification of the over-constrained parallel kinematic machine. Robot. Comput.-Integr. Manuf. 2018, 49, 105–119. [Google Scholar] [CrossRef]
- He, L.Y.; Li, Q.C.; Zhu, X.B.; Wu, C.Y. Kinematic Calibration of a 3-DOF Parallel Manipulator with a Laser Tracker. J. Dyn. Syst. Meas. Control. 2018, 141. [Google Scholar] [CrossRef]
- Park, F.C.; Okamura, K. Kinematic Calibration and the Product of Exponentials Formula. In Advances in Robot Kinematics and Computational Geometry; Lenarčič, J., Ravani, B., Eds.; Springer: Dordrecht, The Netherlands, 1994; pp. 119–128. [Google Scholar]
- Chen, I.M.; Yang, G.L.; Tan, C.T.; Song, H.Y. Local POE model for robot kinematic calibration. Mech. Mach. Theory 2001, 36, 1215–1239. [Google Scholar] [CrossRef]
- Chen, G.L.; Kong, L.Y.; Li, Q.C.; Wang, H.; Lin, Z.Q. Complete, minimal and continuous error models for the kinematic calibration of parallel manipulators based on POE formula. Mech. Mach. Theory 2018, 121, 844–856. [Google Scholar] [CrossRef]
- Kong, L.Y.; Chen, G.L.; Zhang, Z.; Wang, H. Kinematic calibration and investigation of the influence of universal joint errors on accuracy improvement for a 3-DOF parallel manipulator. Robot. Comput.-Integr. Manuf. 2018, 49, 388–397. [Google Scholar] [CrossRef]
- Wu, H.Y.; Kong, L.Y.; Li, Q.C.; Wang, H.; Chen, G.L. A Comparative Study on Kinematic Calibration for a 3-DOF Parallel Manipulator Using the Complete-Minimal, Inverse-Kinematic and Geometric-Constraint Error Models. Chin. J. Mech. Eng. 2023, 36, 121. [Google Scholar] [CrossRef]
- Kong, L.Y.; Xu, X.J. Calibration of a Polarimetric MIMO Array with Horn Elements for Near-Field Measurement. IEEE Trans. Antennas Propag. 2020, 68, 4489–4501. [Google Scholar] [CrossRef]
- Sun, T.; Lian, B.B.; Yang, S.F.; Song, Y.M. Kinematic Calibration of Serial and Parallel Robots Based on Finite and Instantaneous Screw Theory. IEEE Trans. Robot. 2020, 36, 816–834. [Google Scholar] [CrossRef]
- Sun, T.; Zhai, Y.P.; Song, Y.M.; Zhang, J.T. Kinematic calibration of a 3-DoF rotational parallel manipulator using laser tracker. Robot. Comput.-Integr. Manuf. 2016, 41, 78–91. [Google Scholar] [CrossRef]
- Yin, F.W.; Tian, W.J.; Liu, H.T.; Huang, T.; Chetwynd, D.G. A screw theory based approach to determining the identifiable parameters for calibration of parallel manipulators. Mech. Mach. Theory 2020, 145, 103665. [Google Scholar] [CrossRef]
- Liu, H.T.; Huang, T.; Chetwynd, D.G. A General Approach for Geometric Error Modeling of Lower Mobility Parallel Manipulators. J. Mech. Robot. 2011, 3, 021013. [Google Scholar] [CrossRef]
- Chen, Y.L.; Zhang, X.M.; Huang, Y.J.; Wu, Y.B.; Ota, J. Error modeling and analysis of a spherical parallel mechanism with a multiloop circuit incremental method. Mech. Mach. Theory 2024, 191, 105523. [Google Scholar] [CrossRef]
- Luo, J.; Chen, S.; Jiang, D.; Zheng, T.; Li, H.; Fang, Z.; Zhang, C.; Yang, G. Efficient Kinematic Calibration for Parallel Manipulators Based on Unit Dual Quaternion. IEEE Trans. Ind. Inform. 2024, 20, 6791–6801. [Google Scholar] [CrossRef]
- Hestenes, D.; Sobczyk, G. Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Hildenbrand, D. Foundations of Geometric Algebra Computing; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Perwass, C.; Edelsbrunner, H.; Kobbelt, L.; Polthier, K. Geometric Algebra with Applications in Engineering; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Dorst, L.; Fontijne, D.; Mann, S. Geometric Algebra for Computer science: An Object-Oriented Approach to Geometry; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Li, Q.C.; Chai, X.X.; Xiang, J.N. Mobility Analysis of Limited-Degrees-of-Freedom Parallel Mechanisms in the Framework of Geometric Algebra. J. Mech. Robot. 2016, 8, 041005. [Google Scholar] [CrossRef]
- Huang, X.G.; Ma, C.Y.; Su, H.J. A geometric algebra algorithm for the closed-form forward displacement analysis of 3-PPS parallel mechanisms. Mech. Mach. Theory 2019, 137, 280–296. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X.W.; Wei, S.M.; Li, D.L.; Liao, Q.Z. CGA-Based approach to direct kinematics of parallel mechanisms with the 3-RS structure. Mech. Mach. Theory 2018, 124, 162–178. [Google Scholar] [CrossRef]
- Kim, J.S.; Jeong, J.H.; Park, J.H. Inverse kinematics and geometric singularity analysis of a 3-SPS/S redundant motion mechanism using conformal geometric algebra. Mech. Mach. Theory 2015, 90, 23–36. [Google Scholar] [CrossRef]
- Ma, J.Y.; Chen, Q.H.; Yao, H.J.; Chai, X.X.; Li, Q.C. Singularity analysis of the 3/6 Stewart parallel manipulator using geometric algebra. Math. Methods Appl. Sci. 2018, 41, 2494–2506. [Google Scholar] [CrossRef]
- Yao, H.J.; Chen, Q.H.; Chai, X.X.; Li, Q.C. Singularity Analysis of 3-RPR Parallel Manipulators Using Geometric Algebra. Adv. Appl. Clifford Algebras 2017, 27, 2097–2113. [Google Scholar] [CrossRef]
- Song, Y.M.; Han, P.P.; Wang, P.F. Type synthesis of 1T2R and 2R1T parallel mechanisms employing conformal geometric algebra. Mech. Mach. Theory 2018, 121, 475–486. [Google Scholar] [CrossRef]
- Lian, B.B. Geometric Error Modeling of Parallel Manipulators Based on Conformal Geometric Algebra. Adv. Appl. Clifford Algebras 2018, 28, 30. [Google Scholar] [CrossRef]








| Entity | IPNS Representation | OPNS Representation |
|---|---|---|
| Point | ||
| Sphere | ||
| Plane | ||
| Circle | ||
| Line | ||
| Point pair |
| Errors | Set Values (m/rad) | Identified Value (m/rad) | Errors | Set Values (m/rad) | Identified Value (m/rad) |
|---|---|---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, H.; Tang, C.; Chai, X. Geometric Error Modeling of 3-DOF Planar Parallel Manipulators Using Conformal Geometric Algebra. Machines 2025, 13, 1079. https://doi.org/10.3390/machines13121079
Yao H, Tang C, Chai X. Geometric Error Modeling of 3-DOF Planar Parallel Manipulators Using Conformal Geometric Algebra. Machines. 2025; 13(12):1079. https://doi.org/10.3390/machines13121079
Chicago/Turabian StyleYao, Huijing, Chenxin Tang, and Xinxue Chai. 2025. "Geometric Error Modeling of 3-DOF Planar Parallel Manipulators Using Conformal Geometric Algebra" Machines 13, no. 12: 1079. https://doi.org/10.3390/machines13121079
APA StyleYao, H., Tang, C., & Chai, X. (2025). Geometric Error Modeling of 3-DOF Planar Parallel Manipulators Using Conformal Geometric Algebra. Machines, 13(12), 1079. https://doi.org/10.3390/machines13121079
