From Sensors to Insights: Interpretable Audio-Based Machine Learning for Real-Time Vehicle Fault and Emergency Sound Classification
Abstract
Share and Cite
Badawy, M.; Rashed, A.; Bamaqa, A.; Sayed, H.A.; Elagamy, R.; Almaliki, M.; Farrag, T.A.; Elhosseini, M.A. From Sensors to Insights: Interpretable Audio-Based Machine Learning for Real-Time Vehicle Fault and Emergency Sound Classification. Machines 2025, 13, 888. https://doi.org/10.3390/machines13100888
Badawy M, Rashed A, Bamaqa A, Sayed HA, Elagamy R, Almaliki M, Farrag TA, Elhosseini MA. From Sensors to Insights: Interpretable Audio-Based Machine Learning for Real-Time Vehicle Fault and Emergency Sound Classification. Machines. 2025; 13(10):888. https://doi.org/10.3390/machines13100888
Chicago/Turabian StyleBadawy, Mahmoud, Amr Rashed, Amna Bamaqa, Hanaa A. Sayed, Rasha Elagamy, Malik Almaliki, Tamer Ahmed Farrag, and Mostafa A. Elhosseini. 2025. "From Sensors to Insights: Interpretable Audio-Based Machine Learning for Real-Time Vehicle Fault and Emergency Sound Classification" Machines 13, no. 10: 888. https://doi.org/10.3390/machines13100888
APA StyleBadawy, M., Rashed, A., Bamaqa, A., Sayed, H. A., Elagamy, R., Almaliki, M., Farrag, T. A., & Elhosseini, M. A. (2025). From Sensors to Insights: Interpretable Audio-Based Machine Learning for Real-Time Vehicle Fault and Emergency Sound Classification. Machines, 13(10), 888. https://doi.org/10.3390/machines13100888