Multi-Level Behavioral Mechanisms and Kinematic Modeling Research of Cellular Space Robot
Abstract
1. Introduction
2. Cellular Space Robot System
2.1. CSR Structure and Working Mechanism
2.2. The Kinematic Model of the CSR Module
3. Multi-Level Topological Description of CSR
3.1. CSR Multi-Level Topology Reachability Analysis
3.2. CSR Multi-Level Assembly Representation
- 1.
- The is used to denote the entry of the CSR’s organ assembly matrix, the represents the assembly relationship of module- when the CSR’s module- points to module- along the directed-graph pathway;
- 2.
- , where k, l are the input and output interfaces of the CSR module-i respectively;
- 3.
- When is the starting point of the directed graph path, there is , and the represents the CSR module assembled and connected to the base by using interface-; when is the ending point of the directed graph path , there is holds and represents the external output motion of the CSR’s module-i using interface-l.
- 1.
- The is used to denote the entry of the CSR’s robot assembly matrix , the represents the assembly relationship of organ-i when the CSR organ- points to organ-j along the directed graph pathway;
- 2.
- , where k denotes that the CSR’s organ-i is connected to organ-j by using the module-k, the l denotes that organ-i uses the interface-l for external output, and m denotes that the organ-j is connected to organ-i using the interface-m of the module-1;
- 3.
- When is the endpoint of the path in the directed graph of the robot level, the conditions and hold, representing that the module- of the CSR’s organ-i uses interface-m to output motion externally.
4. Multilevel Kinematic Modeling of CSR
4.1. Organ-Level Kinematic Model
Algorithm 1: Calculate the path matrix |
Input: The topological-directed graph of the robot Output: Pathway matrix for topological organization
|
Algorithm 2: Kinematic algorithms for CSR organ |
Input: The organ assembly matrix , the rotation angle of modules ; Output: The pose of the output interface coordinate system of the end-of-organ module relative to the base coordinate system , ; Matrix of the output coordinate system of the modules of the organ, .
|
4.2. Robot-Level Kinematic Model
5. Simulation Verification
5.1. Verification of Organ-Level Kinematic Algorithm
5.2. Verification of Robot-Level Kinematic Algorithm
Algorithm 3: Kinematic algorithms for CSR robot |
|
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, W.-J.; Cheng, D.-Y.; Liu, X.-G.; Wang, Y.-B.; Shi, W.-H.; Tang, Z.-X.; Gao, F.; Zeng, F.-M.; Chai, H.-Y.; Luo, W.-B.; et al. On-orbit service (OOS) of spacecraft: A review of engineering developments. Prog. Aerosp. Sci. 2019, 108, 32–120. [Google Scholar] [CrossRef]
- Qiu, H. Review of deployable sar antenna structures of spacecraft. J. Astronaut. 2021, 42, 1197. [Google Scholar]
- Ding, X.; Wang, Y.; Wang, Y.; Xu, K. A review of structures, verification, and calibration technologies of space robotic systems for on-orbit servicing. Sci. China Technol. Sci. 2021, 64, 462–480. [Google Scholar] [CrossRef]
- Gao, L.; Cordova, G.; Danielson, C.; Fierro, R. Autonomous Multi-Robot Servicing for Spacecraft Operation Extension. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Michigan, MI, USA, 1–5 October 2023; pp. 10729–10735. [Google Scholar]
- Flores-Abad, A.; Ma, O.; Pham, K.; Ulrich, S. A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 2014, 68, 1–26. [Google Scholar] [CrossRef]
- Chang, H.; Huang, P.; Wang, M.; Meng, Z. Distributed control allocation for cellular space robots in takeover control. Acta Aeronaut. Astronaut. Sin. 2016, 37, 2864–2873. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, Y.; Tian, H.; An, D.X. Key Techniques and Applications of Space Cellular Robotic System. J. Astronaut. 2018, 39, 1071–1080. [Google Scholar] [CrossRef]
- Ding, H. Uniform Topological Representation Model of Planar Mechanisms and Isomorphism Identification. Chin. J. Mech. Eng. 2009, 45, 99–103. [Google Scholar] [CrossRef]
- Chu, J.; Zou, Y. An algorithm for structural synthesis of planar simple and multiple joint kinematic chains. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2013, 228, 2178–2192. [Google Scholar] [CrossRef]
- Dong, K.; Li, D.; Kong, X. Representation of planar kinematic chains with multiple joints based on a modified graph and isomorphism identification. Mech. Mach. Theory 2022, 172, 104793. [Google Scholar] [CrossRef]
- Eldershaw, C.; Yim, M.H.; Duff, D.; Roufas, K.; Zhang, Y. Robotics for Future Land Warfare: Modular Self Reconfigurable Robots. In Seminar and Workshop, Defence Science Technology Organisation, Engineering; Environmental Science: Adelaide, Australia, 2002. [Google Scholar]
- Yim, M.; Roufas, K.; Duff, D.; Zhang, Y.; Eldershaw, C.; Homans, S. Modular Reconfigurable Robots in Space Applications. Auton. Robot. 2003, 14, 225–237. [Google Scholar] [CrossRef]
- Paredis, C.J.J.; Brown, H.B.; Khosla, P.K. A rapidly deployable manipulator system. In Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 22–28 April 1996; Volume 1432, pp. 1434–1439. [Google Scholar]
- Acaccia, G.; Bruzzone, L.; Razzoli, R. A modular robotic system for industrial applications. Assem. Autom. 2008, 28, 151–162. [Google Scholar] [CrossRef]
- Jie, Z.; Xindan, C.; Yanhe, Z.; Shufeng, T. A new self-reconfigurable modular robotic system UBot: Multi-mode locomotion and self-reconfiguration. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1020–1025. [Google Scholar]
- Zhao, J.; Cui, X.; Zhu, Y.; Tang, S. UBot: A new reconfigurable modular robotic system with multimode locomotion ability. Ind. Robot Int. J. 2012, 39, 178–190. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, J.; Cui, X.; Wang, X.; Tang, S.; Zhang, X.; Yin, J. Design and implementation of UBot: A modular Self-Reconfigurable Robot. In Proceedings of the 2013 IEEE International Conference on Mechatronics and Automation, Takamatsu, Kagawa, Japan, 4–7 August 2013; pp. 1217–1222. [Google Scholar]
- Liu, C.; Yim, M. Configuration Recognition with Distributed Information for Modular Robots. In Robotics Research; Springer International Publishing: Cham, Switzerland, 2020; pp. 967–983. [Google Scholar]
- Liu, C.; Lin, Q.; Kim, H.; Yim, M. SMORES-EP, a modular robot with parallel self-assembly. Auton. Robot. 2023, 47, 211–228. [Google Scholar] [CrossRef]
- Chen, I.M.; Guilin, Y. Configuration independent kinematics for modular robots. In Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 22–28 April 1996; Volume 1442, pp. 1440–1445. [Google Scholar]
- Hou, F.; Shen, W.-M. Graph-based optimal reconfiguration planning for self-reconfigurable robots. Robot. Auton. Syst. 2014, 62, 1047–1059. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, S.F.; Zhu, Y.; Xindan, C. Topological description method of UBot self-reconfigurable robot. J. Harbin Instit. Tech. 2011, 43, 46–49+55. [Google Scholar]
- Thakker, R.; Kamat, A.; Bharambe, S.; Chiddarwar, S.; Bhurchandi, K.M. ReBiS-Reconfigurable Bipedal Snake robot. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Illinois, IL, USA, 14–18 September 2014; pp. 309–314. [Google Scholar]
- Bi, Z.M.; Gruver, W.A.; Zhang, W.J.; Lang, S.Y.T. Automated modeling of modular robotic configurations. Robot. Auton. Syst. 2006, 54, 1015–1025. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, S.; Wang, Z.; Zhang, L.M.; Ma, X.; Cui, Z. The Kinematics Analysis of a Novel Self-Reconfigurable Modular Robot Based on Screw Theory. DEStech Trans. Eng. Technol. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Kelmar, L.; Khosla, P.K. Automatic generation of kinematics for a reconfigurable modular manipulator system. In Proceedings of the 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, 24–29 April 1988; Volume 662, pp. 663–668. [Google Scholar]
- You, B. Gait Analysis of Cellular Space Robot for On Orbit Climbing Truss# br. J. Astronaut. 2020, 41, 521. [Google Scholar]
- Liu, X.; You, B.; Wang, R.; Zhao, Y.; Wei, C.; An, D. Multi-Branch Cellular Space Robot Mechanism Design and Climbing Behavior Research. J. Mech. Robot. 2023, 15, 051016. [Google Scholar] [CrossRef]
- Pan, X.; Wang, H.; Jiang, Y.; Xiao, J. Automatic kinematic modelling of a modular reconfigurable robot. Trans. Inst. Meas. Control 2012, 35, 922–932. [Google Scholar] [CrossRef]
- Zhang, T.; Du, Q.; Yang, G.; Wang, C.; Chen, C.; Zhang, C.; Chen, S.; Fang, Z. Assembly Configuration Representation and Kinematic Modeling for Modular Reconfigurable Robots Based on Graph Theory. Symmetry 2022, 14, 433. [Google Scholar] [CrossRef]
Row | Value |
---|---|
1 | |
2 | |
3 | |
4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Gu, H.; Zhang, X.; Duan, J.; Liu, Z.; Li, Z.; Wang, S.; You, B. Multi-Level Behavioral Mechanisms and Kinematic Modeling Research of Cellular Space Robot. Machines 2024, 12, 598. https://doi.org/10.3390/machines12090598
Liu X, Gu H, Zhang X, Duan J, Liu Z, Li Z, Wang S, You B. Multi-Level Behavioral Mechanisms and Kinematic Modeling Research of Cellular Space Robot. Machines. 2024; 12(9):598. https://doi.org/10.3390/machines12090598
Chicago/Turabian StyleLiu, Xiaomeng, Haiyu Gu, Xiangyu Zhang, Jianyu Duan, Zhaoxu Liu, Zhichao Li, Siyu Wang, and Bindi You. 2024. "Multi-Level Behavioral Mechanisms and Kinematic Modeling Research of Cellular Space Robot" Machines 12, no. 9: 598. https://doi.org/10.3390/machines12090598
APA StyleLiu, X., Gu, H., Zhang, X., Duan, J., Liu, Z., Li, Z., Wang, S., & You, B. (2024). Multi-Level Behavioral Mechanisms and Kinematic Modeling Research of Cellular Space Robot. Machines, 12(9), 598. https://doi.org/10.3390/machines12090598