A Multi-Input Convolutional Neural Network Model for Electric Motor Mechanical Fault Classification Using Multiple Image Transformation and Merging Methods
Abstract
:1. Introduction
- Automatically extracting and transforming key features of time series signals to use features in both time and frequency domains, and standardizing different formats such as sampling rate, duration, etc., through image transformation, so that the same model can be used in different datasets;
- Converting signals into images reduces the number of dimensions of the data and makes it easier to process efficiently in deep learning models using CNNs with a two-dimensional image representation;
- Through experiments, we compared different image conversion methods (RP, GASF, and GADF) and proposed a multi-input CNN structure that combines the conversion methods and shows more robust performance.
2. Materials and Methods
2.1. Dataset
2.2. Time Series Data
2.3. Feature Extraction
2.3.1. RP (Recurrence Plot)
2.3.2. GAF (Gramian Angular Field)
3. Models
3.1. Single-Input CNN (Convolutional Neural Network) Model
3.2. Multi-Input CNN Model
4. Experimental Procedures
4.1. Experimental Configuration
4.2. Experimental Results
4.2.1. Bearing
4.2.2. Belt
4.2.3. Shaft
4.2.4. Rotor
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiao, J.; Zhao, M.; Lin, J.; Liang, K. A comprehensive review on convolutional neural network in machine fault diagnosis. Neurocomputing 2020, 417, 36–63. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Wang, K. A deep learning driven method for fault classification and degradation assessment in mechanical equipment. Comput. Ind. 2019, 104, 1–10. [Google Scholar] [CrossRef]
- Guo, M.-F.; Yang, N.-C.; Chen, W.-F. Deep-learning-based fault classification using Hilbert–Huang transform and convolutional neural network in power distribution systems. IEEE Sens. J. 2019, 19, 6905–6913. [Google Scholar] [CrossRef]
- Jiang, Q.; Chang, F.; Sheng, B. Bearing fault classification based on convolutional neural network in noise environment. IEEE Access 2019, 7, 69795–69807. [Google Scholar] [CrossRef]
- Grezmak, J.; Zhang, J.; Wang, P.; Loparo, K.A.; Gao, R.X. Interpretable convolutional neural network through layer-wise relevance propagation for machine fault diagnosis. IEEE Sens. J. 2019, 20, 3172–3181. [Google Scholar] [CrossRef]
- Huang, R.; Li, J.; Wang, S.; Li, G.; Li, W. A Robust weight-shared capsule network for intelligent machinery fault diagnosis. IEEE Trans. Ind. Inform. 2020, 16, 6466–6475. [Google Scholar] [CrossRef]
- Kaya, Y.; Kuncan, M.; Kaplan, K.; Minaz, M.R.; Ertunç, H.M. A new feature extraction approach based on one dimensional gray level co-occurrence matrices for bearing fault classification. J. Exp. Theor. Artif. Intell. 2021, 33, 161–178. [Google Scholar] [CrossRef]
- Kuncan, M.; Kaplan, K.; Miṅaz, M.R.; Kaya, Y.; Ertunç, H.M. A novel feature extraction method for bearing fault classification with one dimensional ternary patterns. ISA Trans. 2020, 100, 346–357. [Google Scholar] [CrossRef]
- Chai, Z.; Zhao, C. Enhanced random forest with concurrent analysis of static and dynamic nodes for industrial fault classification. IEEE Trans. Ind. Inform. 2019, 16, 54–66. [Google Scholar] [CrossRef]
- Hu, Q.; Si, X.-S.; Zhang, Q.-H.; Qin, A.-S. A rotating machinery fault diagnosis method based on multi-scale dimensionless indicators and random forests. Mech. Syst. Signal Process. 2020, 139, 106609. [Google Scholar] [CrossRef]
- Hu, C.; He, S.; Wang, Y. A classification method to detect faults in a rotating machinery based on kernelled support tensor machine and multilinear principal component analysis. Appl. Intell. 2021, 51, 2609–2621. [Google Scholar] [CrossRef]
- Toma, R.N.; Kim, J.-M. Bearing fault classification of induction motors using discrete wavelet transform and ensemble machine learning algorithms. Appl. Sci. 2020, 10, 5251. [Google Scholar] [CrossRef]
- Xie, J.; Li, Z.; Zhou, Z.; Liu, S. A novel bearing fault classification method based on XGBoost: The fusion of deep learning-based features and empirical features. IEEE Trans. Instrum. Meas. 2020, 70, 1–9. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Y.; Gu, J. Cross-domain intelligent fault classification of bearings based on tensor-aligned invariant subspace learning and two-dimensional convolutional neural networks. Knowl.-Based Syst. 2020, 209, 106214. [Google Scholar] [CrossRef]
- Asutkar, S.; Tallur, S. Deep transfer learning strategy for efficient domain generalisation in machine fault diagnosis. Sci. Rep. 2023, 13, 6607. [Google Scholar] [CrossRef] [PubMed]
- Sahin, S.E.; Gulhan, G.; Barua, P.D.; Tuncer, T.; Dogan, S.; Faust, O.; Acharya, U.R. PrismPatNet: Novel prism pattern network for accurate fault classification using engine sound signals. Expert Syst. 2023, 40, e13312. [Google Scholar] [CrossRef]
- Duan, A.; Guo, L.; Gao, H.; Wu, X.; Dong, X. Deep focus parallel convolutional neural network for imbalanced classification of machinery fault diagnostics. IEEE Trans. Instrum. Meas. 2020, 69, 8680–8689. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Wu, W.; Dong, F.; Wan, S. Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved Convolution Neural Net-work. Entropy 2023, 25, 737. [Google Scholar] [CrossRef]
- Rajabioun, R.; Afshar, M.; Mete, M.; Atan, Ö.; Akin, B. Distributed Bearing Fault Classification of Induction Motors Using 2D Deep-Learning Model. IEEE J. Emerg. Sel. Top. Ind. Electron. 2023, 5, 115–125. [Google Scholar] [CrossRef]
- Khan, M.A.; Asad, B.; Vaimann, T.; Kallaste, A.; Pomarnacki, R.; Hyunh, V.K. Improved Fault Classification and Localization in Power Transmission Networks Using VAE-Generated Synthetic Data and Machine Learning Algorithms. Machines 2023, 11, 963. [Google Scholar] [CrossRef]
- Mechanical Facility Fault Predictive Sensor. AI-Hub. 18 June 2021. Available online: https://aihub.or.kr/aidata/30748 (accessed on 31 January 2024).
- Marwan, N.; Carmenromano, M.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Wang, Z.; Oates, T. Imaging time-series to improve classification and imputation. arXiv 2015, arXiv:1506.00327. [Google Scholar]
- Xiang, J.; Zhong, Y. A novel personalized diagnosis methodology using numerical simulation and an intelligent method to detect faults in a shaft. Appl. Sci. 2016, 6, 414. [Google Scholar] [CrossRef]
- Lee, W.; Jung, T.-Y.; Lee, S. Dynamic Characteristics Prediction Model for Diesel Engine Valve Train Design Parameters Based on Deep Learning. Electronics 2023, 12, 1806. [Google Scholar] [CrossRef]
- Hadsell, R.; Rao, D.; Rusu, A.A.; Pascanu, R. Embracing change: Continual learning in deep neural networks. Trends Cogn. Sci. 2020, 24, 1028–1040. [Google Scholar] [CrossRef] [PubMed]
- Lesort, T.; Lomonaco, V.; Stoian, A.; Maltoni, D.; Filliat, D.; Díaz-Rodríguez, N. Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges. Inf. Fusion 2019, 58, 52–68. [Google Scholar] [CrossRef]
- Shin, J.; Lee, S. Robust and Lightweight Deep Learning Model for Industrial Fault Diagnosis in Low-Quality and Noisy Data. Electronics 2023, 12, 409. [Google Scholar] [CrossRef]
Parameter | Type | Description |
---|---|---|
Date | string | Data collection date |
Filename | string | Data filename |
Data Label | string | Fault type |
Label_No | string | Fault type unique number |
Motor Spec | object [] | Motor rpm, rated power, rated current |
Period | string | Collection time |
Sample Rate | integer | Collected signal sample frequency |
RMS | float | Effective value according to fault type |
Data Length | integer | Data length |
Layer (Type) | Output Shape | Parameter |
---|---|---|
Conv2D | (50, 50, 32) | 896 |
Conv2D | (50, 50, 64) | 18,496 |
Max_Pool2D | (25, 25, 64) | 0 |
Dropout | (25, 25, 64) | 0 |
Flatten | (40,000) | 0 |
Dense | (256) | 10,240,256 |
Dropout | (256) | 0 |
Dense | (1) | 257 |
Input | Merging | Method | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|---|
Single | None | RP | 0.999 | 1.000 | 0.997 | 0.998 |
GASF | 0.999 | 1.000 | 0.998 | 0.999 | ||
GADF | 0.999 | 1.000 | 0.998 | 0.999 | ||
Multiple | Concatenated | RP-GASF-GADF | 0.995 | 0.993 | 1.000 | 0.997 |
RP-GASF | 0.999 | 1.000 | 0.998 | 0.999 | ||
RP-GADF | 1.000 | 1.000 | 1.000 | 1.000 | ||
GASF-GADF | 0.999 | 1.000 | 0.999 | 0.999 | ||
Addition | RP-GASF-GADF | 0.999 | 0.998 | 1.000 | 0.999 | |
RP-GASF | 1.000 | 0.999 | 1.000 | 1.000 | ||
RP-GADF | 1.000 | 1.000 | 1.000 | 1.000 | ||
GASF-GADF | 0.997 | 1.000 | 0.996 | 0.998 | ||
Average | RP-GASF-GADF | 0.973 | 0.964 | 1.000 | 0.982 | |
RP-GASF | 0.999 | 0.999 | 1.000 | 0.999 | ||
RP-GADF | 0.999 | 0.998 | 1.000 | 0.999 | ||
GASF-GADF | 1.000 | 1.000 | 1.000 | 1.000 |
Input | Merging | Method | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|---|
Single | None | RP | 0.740 | 1.000 | 0.740 | 0.851 |
GASF | 0.997 | 0.995 | 0.996 | 0.995 | ||
GADF | 0.993 | 0.996 | 0.977 | 0.987 | ||
Multiple | Concatenated | RP-GASF-GADF | 0.741 | 0.741 | 1.000 | 0.851 |
RP-GASF | 0.741 | 0.741 | 1.000 | 0.851 | ||
RP-GADF | 0.741 | 0.741 | 1.000 | 0.851 | ||
GASF-GADF | 0.997 | 0.997 | 0.999 | 0.998 | ||
Addition | RP-GASF-GADF | 0.741 | 0.741 | 1.000 | 0.851 | |
RP-GASF | 0.741 | 0.741 | 1.000 | 0.851 | ||
RP-GADF | 0.741 | 0.741 | 1.000 | 0.851 | ||
GASF-GADF | 0.998 | 0.999 | 0.999 | 0.999 | ||
Average | RP-GASF-GADF | 0.741 | 0.741 | 1.000 | 0.851 | |
RP-GASF | 0.741 | 0.741 | 1.000 | 0.851 | ||
RP-GADF | 0.741 | 0.741 | 1.000 | 0.851 | ||
GASF-GADF | 0.996 | 0.995 | 0.999 | 0.997 |
Input | Merging | Method | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|---|
Single | None | RP | 0.823 | 0.817 | 1.000 | 0.899 |
GASF | 0.971 | 0.968 | 0.996 | 0.982 | ||
GADF | 0.957 | 0.958 | 0.989 | 0.973 | ||
Multiple | Concatenate | RP-GASF-GADF | 0.877 | 0.865 | 1.000 | 0.928 |
RP-GASF | 0.896 | 0.884 | 1.000 | 0.938 | ||
RP-GADF | 0.826 | 0.820 | 1.000 | 0.901 | ||
GASF-GADF | 0.979 | 0.976 | 0.997 | 0.987 | ||
Addition | RP-GASF-GADF | 0.872 | 0.861 | 1.000 | 0.925 | |
RP-GASF | 0.968 | 0.963 | 0.998 | 0.980 | ||
RP-GADF | 0.825 | 0.819 | 1.000 | 0.900 | ||
GASF-GADF | 0.946 | 0.937 | 0.998 | 0.967 | ||
Average | RP-GASF-GADF | 0.907 | 0.895 | 1.000 | 0.945 | |
RP-GASF | 0.965 | 0.968 | 0.988 | 0.978 | ||
RP-GADF | 0.827 | 0.820 | 1.000 | 0.901 | ||
GASF-GADF | 0.973 | 0.976 | 0.989 | 0.983 |
Input | Merging | Method | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|---|
Single | None | RP | 0.982 | 0.939 | 0.997 | 0.967 |
GASF | 0.978 | 0.935 | 0.982 | 0.958 | ||
GADF | 0.960 | 0.925 | 0.919 | 0.922 | ||
Multiple | Concatenated | RP-GASF-GADF | 0.978 | 0.950 | 0.965 | 0.958 |
RP-GASF | 0.978 | 0.942 | 0.975 | 0.958 | ||
RP-GADF | 0.986 | 0.957 | 0.991 | 0.974 | ||
GASF-GADF | 0.974 | 0.920 | 0.984 | 0.951 | ||
Addition | RP-GASF-GADF | 0.982 | 0.940 | 0.990 | 0.965 | |
RP-GASF | 0.969 | 0.898 | 0.992 | 0.942 | ||
RP-GADF | 0.973 | 0.914 | 0.986 | 0.949 | ||
GASF-GADF | 0.977 | 0.936 | 0.978 | 0.956 | ||
Average | RP-GASF-GADF | 0.985 | 0.958 | 0.983 | 0.970 | |
RP-GASF | 0.988 | 0.964 | 0.988 | 0.976 | ||
RP-GADF | 0.992 | 0.981 | 0.989 | 0.985 | ||
GASF-GADF | 0.949 | 0.917 | 0.882 | 0.899 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, I.; Lee, S. A Multi-Input Convolutional Neural Network Model for Electric Motor Mechanical Fault Classification Using Multiple Image Transformation and Merging Methods. Machines 2024, 12, 105. https://doi.org/10.3390/machines12020105
Bae I, Lee S. A Multi-Input Convolutional Neural Network Model for Electric Motor Mechanical Fault Classification Using Multiple Image Transformation and Merging Methods. Machines. 2024; 12(2):105. https://doi.org/10.3390/machines12020105
Chicago/Turabian StyleBae, Insu, and Suan Lee. 2024. "A Multi-Input Convolutional Neural Network Model for Electric Motor Mechanical Fault Classification Using Multiple Image Transformation and Merging Methods" Machines 12, no. 2: 105. https://doi.org/10.3390/machines12020105
APA StyleBae, I., & Lee, S. (2024). A Multi-Input Convolutional Neural Network Model for Electric Motor Mechanical Fault Classification Using Multiple Image Transformation and Merging Methods. Machines, 12(2), 105. https://doi.org/10.3390/machines12020105