Numerical Analysis of Bionic Inlet Nozzle Effects on Squirrel-Cage Fan Flow Characteristics
Abstract
:1. Introduction
2. Design Methodology and Modeling
2.1. Bionic Inlet Nozzle’s Structural Design and Parameterization
2.2. Model and Validation
2.3. Control Equations and Turbulence Model
3. Results and Discussion
3.1. Analysis of Fan Aerodynamic Performance
3.2. Analysis of the Internal Flow
3.3. Analysis of the Effect on Inlet Distortion
4. Conclusions
- The bionic structure of the humpback whale flipper’s leading-edge nodule can be achieved by splicing multiple sinusoidal curves, and the three control parameters (n, Tm, An) allow for the multivariate design of the bionic structure, enabling it to adapt to fans of varying sizes and operating conditions.
- The inlet nozzle bionic structure, if designed properly, can significantly improve the inlet distortion and enhance the fan’s aerodynamic performance. Simulation results demonstrate that the fan’s total efficiency when equipped with a bionic inlet nozzle, using control parameters of n = 9, Tm = 1.4, and An = 0.3, is 5.46% higher compared to that of a cylindrical inlet nozzle and 2.01% higher compared to that of a conical inlet nozzle.
- The bionic design of the inlet nozzle allows the airflow to receive sufficient buffer in the “concave area” on the inner surface of the inlet nozzle before entering the fan. This helps to reduce the separation vortex caused by the fan inlet due to steering, and the optimized design of the bionic structure improves the radial flow velocity in the front span of the impeller. It also enhances the axial uniformity of the inlet airflow angle of the impeller and reduces the entropy generation rate of inlet air at the shroud impeller.
- The bionic inlet nozzle structure improves the flow characteristics of the shroud impeller on the basis of improving the inlet distortion of the fan, and it also improves the uniformity of the flow velocity at different spans of the impeller outlet, as well as reducing the flow loss of the flow channel between the impeller and volute.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Cartesian coordinates (m) | |
n | The number of segments (−) |
Tm | The amplitude ratio (−) |
An | The terminal amplitude (m) |
Turbulent kinetic energy ( | |
Density () | |
Pressure () | |
Dynamic viscosity () | |
Kinematic viscosity ) | |
Fluctuating velocity () | |
Time () | |
Kronecker delta | |
Radial velocity () | |
η | Fan total efficiency () |
ηmax | Best total efficiency () |
Pt | Fan total pressure () |
Qv | Volumetric flow rate () |
EGR | Entropy generation rate (kg·m−1 s−3 k−1) |
β | Blade setting angle (°) |
βf | Velocity flow angle (°) |
References
- Li, Z.; Dou, H.S.; Lin, P.; Wei, Y.; Chen, Y.; Lin, L.; Ye, X. Design for a Squirrel Cage Fan with Double Arc Blade. J. Appl. Fluid Mech. 2020, 13, 881–891. [Google Scholar] [CrossRef]
- Kind, R.J.; Tobin, M.G. Flow in a Centrifugal Fan of the Squirrel-Cage Type. J. Turbomach. 1990, 112, 84–90. [Google Scholar] [CrossRef]
- Shu, H.T.; Chen, H.Z. The Influence of a Blade-Guiding Fin on the Pneumatic Performance of an Axial-Flow Cooling Fan. Machines 2023, 11, 483. [Google Scholar] [CrossRef]
- Bayomi, N.N.; Hafiz, A.A.; Osman, A.M. Effect of inlet straighteners on centrifugal fan performance. Energy Convers. Manag. 2006, 47, 3307–3318. [Google Scholar] [CrossRef]
- Montazerin, N.; Damangir, A.; Mirzaie, H. Inlet induced flow in squirrel-cage fans. Proc. Inst. Mech. Eng. Part A J. Power Energy 2000, 214, 243–253. [Google Scholar] [CrossRef]
- Jiang, B.Y.; Xiao, Q.; Wang, J.; Liang, Z.; Yang, X. A literature review on the squirrel-cage fans using in HVAC equipment: Powerful, efficient, and quiet operation. J. Build. Eng. 2023, 73, 106691. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, W.; Wang, J. Analysis of internal flow characteristics of squirrel-cage fan with multi-directional air intake impeller. Int. J. Heat Fluid Flow 2024, 105, 109267.1–109267.17. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Chen, Q.; Li, K.; Wu, S. Effect of inlet distortion on internal flow and performance of a contra-rotating fan operating with single-stage impeller. Flow Meas. Instrum. 2024, 97, 102629. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Stapelfeldt, S.; Vahdati, M. Influence of the inlet distortion on fan stall margin at different rotational speeds. Aerosp. Sci. Technol. 2020, 98, 105668. [Google Scholar] [CrossRef]
- Schnell, R.; Schönweitz, D.; Theune, M.; Corroyer, J. Integration- and Intake-Induced Flow Distortions and Their Impact on Aerodynamic Fan Performance. Adv. Simul. Wing Nacelle Stall 2016, 131, 251–269. [Google Scholar] [CrossRef]
- Madhavan, S.; Wright, T. Rotating stall caused by pressure surface flow separation on centrifugal fan blades. J. Eng. Gas Turbines Power. 1985, 107, 775–781. [Google Scholar] [CrossRef]
- Kassens, L.; Rautenberg, M. Flow measurements behind the inlet guide vane of a centrifugal compressor. In Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, Stockholm, Sweden, 2–5 June 1998. ASME paper 98-GT-86. [Google Scholar] [CrossRef]
- Coppinger, M.; Swain, E. Performance prediction of an industrial centrifugal compressor inlet guide vane system. IMechE Part A 2000, 214, 153–164. [Google Scholar] [CrossRef]
- Chen, P.; Soundra-Nayagam, M.; Bolton, A.N.; Simpson, H.C. Unstable flow in centrifugal fans. J. Fluids Eng. 1996, 118, 128–133. [Google Scholar] [CrossRef]
- Vadari, V.R.; Ruff, G.A.; Reethof, G. Effect of an annular inlet guide on the performance of low-speed centrifugal fans. In Proceedings of the ASME 1996 International Mechanical Engineering Congress and Exposition, Atlanta, GA, USA, 17–22 November 1996. [Google Scholar]
- Yamamoto, S.; Kuratani, F.; Ogawa, T. A Study on the Performance Improvement of Multiblade Fans: Effects of Suction Cones. Trans. Jpn. Soc. Mech. Eng. Ser. B 1999, 65, 2406–2412. [Google Scholar] [CrossRef]
- Wen, X.; Qi, D.; Mao, Y.; Yang, X. Experimental and numerical study on the inlet nozzle of a small squirrel-cage fan. Proc. Inst. Mech. Eng. Part A J. Power Energy 2013, 227, 450–463. [Google Scholar] [CrossRef]
- Wang, J.B.; Ou, Y.; Wu, K. Analysis on the vortices flow in the balde passages of the fan for air-conditioner and the influence of the eccentric fan inlet. J. Eng. Thermophys. 2005, 26, 951. [Google Scholar]
- Xiong, Z.Y.; Wang, M.H.; Liu, X.M.; Li, D.; Wang, L. Performance study of multi-wing centrifugal fan with fish-like blade. J. Xi’an Jiaotong Univ. 2018, 52, 8. [Google Scholar] [CrossRef]
- Dong, X.; Dou, H.S. Effects of Bionic Volute Tongue Bioinspired by Leading Edge of Owl Wing and Its Installation Angle on Performance of Multi-Blade Centrifugal Fan. J. Appl. Fluid Mech. 2021, 14, 1031–1043. [Google Scholar] [CrossRef]
- Wang, K.; Ju, Y.; Zhang, C. A Quantitative Evaluation Method for Impeller-Volute Tongue Interaction and Application to Squirrel Cage Fan with Bionic Volute Tongue. J. Fluids Eng. 2018, 141, 081104. [Google Scholar] [CrossRef]
- Fish, F.E.; Howle, L.E.; Murray, M.M. Hydrodynamic flow control in marine mammals. Integr. Comp. Biol. 2008, 48, 788–800. [Google Scholar] [CrossRef]
- Elshahomi, A.; Kosasih, B.; Barnsley, G.; Beirne, S.; Forsyth, J.; Steele, J.R.; Panhuis, M.I.H. Computational fluid dynamics performance evaluation of grooved fins for surfboards. MRS Adv. 2022, 7, 695–700. [Google Scholar] [CrossRef]
- Xiong, J.; Tang, J.; Guo, P.; Li, J. Flow capacity optimization of a squirrel cage fan with a new rounded rectangle volute under size limitation. Machines 2023, 11, 283. [Google Scholar] [CrossRef]
- Gholamian, M.; Rao, G.K.M.; Bhramara, P. Flow Pattern and Efficiency Changes of Squirrel Cage Fans due to Inlet Diffuser Diameter Changes—Using CFD Method and Experimental Validation. Appl. Mech. Mater. 2014, 446–447, 626–630. [Google Scholar] [CrossRef]
- Ghafoorian, F.; Mirmotahari, S.R.; Eydizadeh, M.; Mehrpooya, M. A systematic investigation on the hybrid Darrieus-Savonius vertical axis wind turbine aerodynamic performance and self-starting capability improvement by installing a curtain. Next Energy 2025, 6, 100203. [Google Scholar] [CrossRef]
- Roache, P.J. Quantification of Uncertainty in Computational Fluid Dynamics. Annu. Rev. Fluid Mech. 1997, 29, 123–160. [Google Scholar] [CrossRef]
- Xiao, M.; Xiao, Q.; Dou, H.S.; Ma, X.; Chen, Y.; He, H.; Ye, X. Study of flow instability in a centrifugal fan based on energy gradient theory. J. Mech. Sci. Technol. 2016, 30, 507–517. [Google Scholar] [CrossRef]
- Xiong, H.-B.; Yu, W.-G.; Chen, D.-W.; Shao, X.-M. Numerical study on the aerodynamic performance and safe running of high-speed trains in sandstorms. J. Zhejiang Univ.-Sci. (Appl. Phys. Eng.) 2011, 12, 971–978. [Google Scholar] [CrossRef]
- Kock, F.; Herwig, H. Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions. Heat Mass Transfer 2004, 47, 2205–2215. [Google Scholar] [CrossRef]
No. | n (−) | Tm (−) | An (m) |
---|---|---|---|
1 | 5 | 1.2 | 0.02 |
2 | 5 | 1.3 | 0.03 |
3 | 5 | 1.4 | 0.025 |
4 | 7 | 1.2 | 0.03 |
5 | 7 | 1.3 | 0.025 |
6 | 7 | 1.4 | 0.02 |
7 | 9 | 1.2 | 0.025 |
8 | 9 | 1.3 | 0.02 |
9 | 9 | 1.4 | 0.03 |
10 | 0 | 0 | 0 |
0 | - | - | - |
Parameter | Value |
---|---|
Number of blades, Z | 48 |
Impeller inlet diameter, D1 | 380 mm |
Impeller outlet diameter, D2 | 500 mm |
Impeller width, b | 275 mm |
Volute width, B | 325 mm |
60° | |
150° |
Grid Properties | Grid 1 | Grid 2 | Grid 3 |
---|---|---|---|
Number of elements × 106 | 8.85 | 11.15 | 15.53 |
Volute element size (mm) | 8 | 7 | 6 |
Impeller element size (mm) | 4 | 3 | 2 |
Number of inflation layers | 5 | 5 | 5 |
First layer thickness (mm) | 0.05 | 0.05 | 0.05 |
Inflation growth rate | 1.2 | 1.2 | 1.2 |
Maximum skewness | 0.872 | 0.881 | 0.861 |
Impeller averaged y+ | 0.534 | 0.482 | 0.215 |
η (−) | 0.6287 | 0.6277 | 0.6262 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Wang, W.; Hu, T.; Wang, J. Numerical Analysis of Bionic Inlet Nozzle Effects on Squirrel-Cage Fan Flow Characteristics. Machines 2024, 12, 858. https://doi.org/10.3390/machines12120858
Zhou H, Wang W, Hu T, Wang J. Numerical Analysis of Bionic Inlet Nozzle Effects on Squirrel-Cage Fan Flow Characteristics. Machines. 2024; 12(12):858. https://doi.org/10.3390/machines12120858
Chicago/Turabian StyleZhou, Hao, Wei Wang, Tiancong Hu, and Jun Wang. 2024. "Numerical Analysis of Bionic Inlet Nozzle Effects on Squirrel-Cage Fan Flow Characteristics" Machines 12, no. 12: 858. https://doi.org/10.3390/machines12120858
APA StyleZhou, H., Wang, W., Hu, T., & Wang, J. (2024). Numerical Analysis of Bionic Inlet Nozzle Effects on Squirrel-Cage Fan Flow Characteristics. Machines, 12(12), 858. https://doi.org/10.3390/machines12120858