Design and Experimental Research of a Non-Destructive Detection Device for High-Precision Cylindrical Roller Dynamic Unbalance
Abstract
:1. Introduction
2. Dynamic Unbalance Non-Destructive Detection Device
2.1. Overall Structure of the Detection Device
2.2. Detection Principle
3. Vibration System Simulation Analysis
4. Test
4.1. Vibration System Modal Test
4.2. Cylindrical Roller Dynamic Unbalance Detection
4.3. Cylindrical Roller Non-Destructive Detection Test Verification
5. Conclusions
6. Patents
- Duan, M.; Liang, S. A Kind of Cylindrical Roller Bearing Roller High-Speed Rotation Driving Device and Driving Method. CN115979513A, 18 April 2023.
- Duan, M.; Liang, S. A Device and Method for Driving a Cylindrical Roller to Rotate at High Speed in an Air-Floating State. CN115950584A, 11 April 2023.
- Duan, M.; Liang, S. A High-Speed Bearing Small Mass Cylindrical Roller Rotation Speed Obtaining Device. CN217059169U, 26 July 2022.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, C.; Zhang, J.; Geng, K.; Wang, S.; Luo, M.; Zhang, X.; Ren, C. Advances in ultra-precision machining of bearing rolling elements. Int. J. Adv. Manuf. Technol. 2022, 122, 3493–3524. [Google Scholar] [CrossRef]
- Xu, F.; Ding, N.; Li, N.; Liu, L.; Hou, N.; Xu, N.; Chen, X. A review of bearing failure Modes, mechanisms and causes. Eng. Fail. Anal. 2023, 152, 107518. [Google Scholar] [CrossRef]
- Li, X.; Horie, M.; Kagawa, T. Study on the basic characteristics of a vortex bearing element. Int. J. Adv. Manuf. Technol. 2013, 64, 1–12. [Google Scholar] [CrossRef]
- Wang, D.; Yuan, J.; Hu, L.; Lyu, B. Multidimensional study on the wear of high-speed, high-temperature, heavy-load bearings. Materials 2023, 16, 2714. [Google Scholar] [CrossRef]
- Hou, X.; Diao, Q.; Liu, Y.; Liu, C.; Zhang, Z.; Tao, C. Failure Analysis of a Cylindrical Roller Bearing Caused by Excessive Tightening Axial Force. Machines 2022, 10, 322. [Google Scholar] [CrossRef]
- Cui, Y.; Deng, S.; Niu, R.; Chen, G. Vibration effect analysis of roller dynamic unbalance on the cage of high-speed cylindrical roller bearing. J. Sound Vib. 2018, 434, 314–335. [Google Scholar] [CrossRef]
- Tiwari, R.; Chakravarthy, V. Simultaneous estimation of the residual unbalance and bearing dynamic parameters from the experimental data in a rotor-bearing system. Mech. Mach. Theory 2009, 44, 792–812. [Google Scholar] [CrossRef]
- Harsha, S.P. Nonlinear dynamic analysis of an unbalanced rotor supported by roller bearing. Chaos Solitons Fractals 2005, 26, 47–66. [Google Scholar] [CrossRef]
- Wang, A.; Yao, W. Theoretical and numerical studies on simultaneous identification of rotor unbalance and sixteen dynamic coefficients of two bearings considering unbalance responses. Int. J. Control Autom. Syst. 2022, 20, 1971–2007. [Google Scholar] [CrossRef]
- Therale, E.L. Dynamic balancing of rotating machinery in the field. ASME J. Appl. Mech. 1934, 56, 745–753. [Google Scholar] [CrossRef]
- Baker, J.G. Methods of rotor-unbalance determination. ASME J. Appl. Mech. 1939, 61, A1–A6. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, H.; Hu, D. Research progress on field dynamic balancing methods for rotating machinery. J. Mech. Electr. Eng. 2021, 38, 1367–1377. (In Chinese) [Google Scholar]
- Zhang, L.; Duan, Z.; Li, D. Research progress of on-site dynamic balancing technology. Chem. Eng. Mach. 2012, 39, 690–694. (In Chinese) [Google Scholar]
- Louis, J. Two-plane balancing of a rotor system without phase response measurements. Trans. ASME J. Vib. Acoust. Stress Reliab. Des. 1987, 109, 162–167. [Google Scholar]
- Bishop, R.E.D.; Gladwell, G.M.L. The Vibration and Balancing of an Unbalanced Flexible Rotor. J. Mech. Eng. Sci. 1959, 1, 66–70. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, H.; Liu, G. Application of augmented Kalman filter to identify unbalance load of rotor-bearing system: Theory and experiment. J. Sound Vib. 2019, 463, 68–69. [Google Scholar] [CrossRef]
- Parkinson, A.G. Balancing of rotating machinery. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1991, 205, 61–63. [Google Scholar] [CrossRef]
- Kellenberger, W. Should a flexible rotor be balanced in N or (N+2) planes. J. Eng. Ind. 1972, 94, 548–560. [Google Scholar] [CrossRef]
- Abbasi, A.; Firouzi, B.; Sendur, P. Identification of unbalance characteristics of rotating machinery using a novel optimization-based methodology. Soft Comput. 2022, 26, 4831–4862. [Google Scholar] [CrossRef]
- Gu, Q.; Tang, Y. Research on computer-aided dynamic balancing machine measurement and analysis system. Mech. Sci. Technol. 1992, 4, 24–27. [Google Scholar]
- Cui, Y.; Deng, S.; Yang, H.; Zhang, W.; Niu, R. Effect of cage dynamic unbalance on the cage’s dynamic characteristics in high-speed cylindrical roller bearings. Ind. Lubr. Tribol. 2019, 71, 1125–1135. [Google Scholar] [CrossRef]
- Cui, Y.; Deng, S.; Ni, Y.; Chen, G. Effect of roller dynamic unbalance on cage stress of high-speed cylindrical roller bearing. Ind. Lubr. Tribol. 2018, 70, 1580–1589. [Google Scholar] [CrossRef]
- Sui, X.; Liu, C.; Li, J.; Xue, Y.; Yu, Y.; Cui, Y. Laser-based measurement for micro-unbalance of cylindrical rollers of the high-speed precision rolling bearings. Clust. Comput. 2019, 22, S9159–S9167. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Y.; Chen, S. Hydrostatic Gas Lubrication, 1st ed.; Harbin Institute of Technology: Harbin, China, 1990; pp. 51–121. [Google Scholar]
- Chen, G.; Ge, Y.; Lu, Q.; Zhang, W.; Wang, S. Air film pressure field characteristics of aerostatic thrust bearing with orifice blockage. Int. J. Adv. Manuf. Technol. 2023, 124, 4317–4328. [Google Scholar] [CrossRef]
- Liang, S.; Duan, M.; Zhang, Z. Development and Investigation of Non-Destructive Detection Drive Mechanism for Precision Type Cylindrical Roller Dynamic Unbalance. Appl. Sci. 2023, 13, 13266. [Google Scholar] [CrossRef]
- Venturini, S.; Cavallaro, S.P.; Vigliani, A. Experimental Techniques for Flywheel Energy Storage System Self-discharge Characterisation. In Proceedings of the International Conference of IFToMM ITALY, Turin, Italy, 11–13 September 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 183–191. [Google Scholar]
- Jin, X.; Liu, Y. Numerical and Experimental Analysis for the Dynamics of Flawed–Machining Rod–Disk Rotor with Inner Misalignment. Machines 2022, 10, 355. [Google Scholar] [CrossRef]
Markings | De-Weight Mass/g | Eccentricity/mm | Dynamic Unbalance |
---|---|---|---|
No. 0 | 0.0000 | 0.0000 | 0.00000 |
No. 1 | 0.0148 | 2.6813 | 0.03968 |
No. 2 | 0.0191 | 2.6920 | 0.05142 |
No. 3 | 0.0385 | 2.4647 | 0.09489 |
No. 4 | 0.0477 | 2.8076 | 0.13392 |
No. 5 | 0.0638 | 2.9043 | 0.18530 |
Cylindrical Roller Markings | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 |
Average Amplitude/mm | 0.000215 | 0.000268 | 0.000482 | 0.00058 | 0.0007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Yang, B.; Duan, M.; Gu, R.; Liang, S.; Chen, Y. Design and Experimental Research of a Non-Destructive Detection Device for High-Precision Cylindrical Roller Dynamic Unbalance. Machines 2024, 12, 684. https://doi.org/10.3390/machines12100684
Zhang Z, Yang B, Duan M, Gu R, Liang S, Chen Y. Design and Experimental Research of a Non-Destructive Detection Device for High-Precision Cylindrical Roller Dynamic Unbalance. Machines. 2024; 12(10):684. https://doi.org/10.3390/machines12100684
Chicago/Turabian StyleZhang, Zhuangya, Baorun Yang, Mingde Duan, Ruijie Gu, Shijie Liang, and Yang Chen. 2024. "Design and Experimental Research of a Non-Destructive Detection Device for High-Precision Cylindrical Roller Dynamic Unbalance" Machines 12, no. 10: 684. https://doi.org/10.3390/machines12100684
APA StyleZhang, Z., Yang, B., Duan, M., Gu, R., Liang, S., & Chen, Y. (2024). Design and Experimental Research of a Non-Destructive Detection Device for High-Precision Cylindrical Roller Dynamic Unbalance. Machines, 12(10), 684. https://doi.org/10.3390/machines12100684