Obstacle Avoidance in Operational Configuration Space Kinematic Control of Redundant Serial Manipulators
Abstract
:1. Introduction
1.1. Basics of Redundant-Serial-Manipulator Kinematics
1.2. A Four-Degree-of-Redundancy Manipulator
1.3. Generalized-Inverse-Velocity-Based Redundancy Resolution
1.4. Problems with Generalized-Inverse-Velocity-Based Redundancy Resolution
1.5. Manipulator Trajectory Planning and Obstacle Avoidance
2. Generalized-Inverse-Velocity-Based Kinematic Control and Obstacle Avoidance
3. Operational Configuration Space Kinematic Control and Obstacle Avoidance
3.1. Inverse Configuration Kinematics
3.2. Operational Space Differentiable Manifold
3.3. Differentiable-Manifold Output Trajectory Tracking and Obstacle Avoidance Algorithm
Algorithm 1. Newton–Raphson iterations to solve Equation (20) | |
1: | |
2: | |
3: | do |
4: | |
5: | |
6: | |
7: | AND iterations < max_iterations |
4. Numerical Examples
4.1. Four-Degree-of-Redundancy Trajectory Tracking and Obstacle Avoidance
4.1.1. Differentiable-Manifold Output Tracking and Obstacle Avoidance
- (1)
- Iterations in the method presented in [4] to evaluate stop when .
- (2)
- Iterations in Algorithm 1 stop when or when iterations > 10 = max_iterations.
4.1.2. Generalized-Inverse-Velocity Output Tracking and Obstacle Avoidance
4.2. Twenty-Degree-of-Redundancy Trajectory Tracking and Obstacle Avoidance
4.2.1. A Twenty-Degree-of-Redundancy Manipulator
4.2.2. Differentiable-Manifold Output Tracking and Obstacle Avoidance
4.2.3. Generalized-Inverse-Velocity Output Tracking and Obstacle Avoidance
- Grade F means that the simulation fails when the first obstacles (O1 or O2) are contacted, long before the narrow corridor indicated in Figure 11m is formed. The failure consists in the manipulator suffering a discontinuity in its configuration upon contact.
- Grade D means that the simulation fails when the manipulator is trapped by the narrow corridor. The failure consists in the manipulator suffering a discontinuity in its configuration when the corridor is formed, without penetrating obstacles.
- Grade C means that, when the narrow corridor is formed, the manipulator starts to penetrate obstacles and suffers discontinuous jumps in its configuration.
5. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pars, L.A. A Treatise on Analytical Dynamics, 1965; Reprint by Ox Bow Press: Woodbridge, UK, 1979. [Google Scholar]
- Robbin, J.W.; Salamon, D.A. Introduction to Differential Geometry; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Haug, E.J.; Peidro, A. Redundant Manipulator Kinematics and Dynamics on Differentiable Manifolds. J. Comput. Nonlinear Dyn. 2022, 17, 111008. [Google Scholar] [CrossRef]
- Haug, E.J. Redundant Serial Manipulator Inverse Position Kinematics and Dynamics. J. Mech. Robot. 2024, 16, 081008. [Google Scholar] [CrossRef]
- Haack, W.; Wendland, W. Lectures on Partial and Pfaffian Differential Equations; Pergamon Press: Oxford, UK, 1972. [Google Scholar]
- Whitney, D.E. Resolved Motion Rate Control of Manipulators and Human Prostheses. IEEE Trans. Man-Mach. Systems. 1969, 10, 47–53. [Google Scholar] [CrossRef]
- Siciliano, B. Kinematic Control of Redundant Robot Manipulators: A Tutorial. J. Intell. Robot. Systems. 1990, 3, 201–212. [Google Scholar] [CrossRef]
- Chiaverini, S.; Oriolo, G.; Maciejewski, A.A. Springer Handbook of Robotics, 2nd ed.; Robots, R., Siciliano, B., Khatib, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Khatib, O. A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation. IEEE J. Robot. Automation. 1987, RA-3, 43–53. [Google Scholar] [CrossRef]
- Khatib, O. The Operational Space Framework. JSME Int. J. Ser. C. 1993, 36, 277–287. [Google Scholar] [CrossRef]
- Klein, C.A.; Huang, C.-H. Review of Pseudoinverse Control for Use with Kinematically Redundant Manipulators. IEEE Trans. Syst. Man Cybern. 1983, SMC-13, 245–250. [Google Scholar] [CrossRef]
- De Luca, A.; Oriolo, G. Nonholonomic Behavior in Redundant Robots Under Kinematic Control. IEEE Trans. Robot. Autom. 1997, 13, 776–782. [Google Scholar] [CrossRef]
- Shamir, T.; Yomdin, Y. Repeatability of Redundant Manipulators: Mathematical Solution of the Problem. IEEE Trans. Autom. Control 1988, 33, 1004–1009. [Google Scholar] [CrossRef]
- Simas, H.; Di Gregorio, R. A Technique Based on Adaptive Extended Jacobians for Improving the Robustness of the Inverse Numerical Kinematics of Redundant Robots. J. Mech. Robot. 2010, 11, 020913. [Google Scholar] [CrossRef]
- Mussa-Ivaldi, F.A.; Hogan, N. Integrable Solutions of Kinematic Redundancy via Impedance Control. Int. J. Robot. Res. 1991, 10, 481–491. [Google Scholar] [CrossRef]
- Haug, E.J. A Cyclic Differentiable Manifold Representation of Redundant Manipulator Kinematics. J. Mech. Robot. 2024, 16, 061005. [Google Scholar] [CrossRef]
- Liegeois, A. Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans. Syst. Man Cybern. 1977, 7, 868–871. [Google Scholar]
- Lee, K.K.; Buss, M. Obstacle avoidance for redundant robots using Jacobian transpose method. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 3509–3514. [Google Scholar]
- Maciejewski, A.A.; Klein, C.A. Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. Int. J. Robot. Res. 1985, 4, 109–117. [Google Scholar] [CrossRef]
- Slotine, S.B.; Siciliano, B. A general framework for managing multiple tasks in highly redundant robotic systems. In Proceedings of the 5th International Conference on Advanced Robotics, Pisa, Italy, 19–22 June 1991; Volume 2, pp. 1211–1216. [Google Scholar]
- Flacco, F.; De Luca, A.; Khatib, O. Control of redundant robots under hard joint constraints: Saturation in the null space. IEEE Trans. Robot. 2015, 31, 637–654. [Google Scholar] [CrossRef]
- Flacco, F.; De Luca, A.; Khatib, O. Motion control of redundant robots under joint constraints: Saturation in the null space. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 285–292. [Google Scholar]
- Kazemipour, A.; Khatib, M.; Al Khudir, K.; Gaz, C.; De Luca, A. Kinematic control of redundant robots with online handling of variable generalized hard constraints. IEEE Robot. Autom. Lett. 2022, 7, 9279–9286. [Google Scholar] [CrossRef]
- Ziese, A.; Fiore, M.D.; Peters, J.; Zimmermann, U.E.; Adamy, J. Redundancy resolution under hard joint constraints: A generalized approach to rank updates. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 7447–7453. [Google Scholar]
- Fiore, M.D.; Meli, G.; Ziese, A.; Siciliano, B.; Natale, C. A general framework for hierarchical redundancy resolution under arbitrary constraints. IEEE Trans. Robot. 2023, 39, 2468–2487. [Google Scholar] [CrossRef]
- Atkinson, K.E. An Introduction to Numerical Analysis, 2nd ed.; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Corwin, L.J.; Szczarba, R.H. Multivariable Calculus; Marcel Dekker: New York, NY, USA, 1982. [Google Scholar]
- Haug, E.J. Computer-Aided Kinematics and Dynamics of Mechanical Systems, Volume II: Modern Methods, 3rd ed.; ResearchGate: Berlin, Germany, 2022; Available online: www.researchgate.net (accessed on 11 November 2023).
- Brogliato, B. Nonsmooth Mechanics—Models, Dynamics and Control, 3rd ed.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Peidró, A.; Pérez-Navarro, P.D.; Puerto, R.; Payá, L.; Reinoso, O. Locking underactuated robots by shrinking their manifolds of free-swinging motion. Mech. Mach. Theory 2023, 188, 105403. [Google Scholar] [CrossRef]
(Seconds) | 0.01 | 0.001 | 0.0001 | 0.00001 (Very Slow Simulation) |
---|---|---|---|---|
0.1 | F | D | D | D |
0.01 | F | D | D | D |
0.001 | F | C | D | C |
0.0001 | F | F | D | C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peidro, A.; Haug, E.J. Obstacle Avoidance in Operational Configuration Space Kinematic Control of Redundant Serial Manipulators. Machines 2024, 12, 10. https://doi.org/10.3390/machines12010010
Peidro A, Haug EJ. Obstacle Avoidance in Operational Configuration Space Kinematic Control of Redundant Serial Manipulators. Machines. 2024; 12(1):10. https://doi.org/10.3390/machines12010010
Chicago/Turabian StylePeidro, Adrian, and Edward J. Haug. 2024. "Obstacle Avoidance in Operational Configuration Space Kinematic Control of Redundant Serial Manipulators" Machines 12, no. 1: 10. https://doi.org/10.3390/machines12010010
APA StylePeidro, A., & Haug, E. J. (2024). Obstacle Avoidance in Operational Configuration Space Kinematic Control of Redundant Serial Manipulators. Machines, 12(1), 10. https://doi.org/10.3390/machines12010010