Observer-Based Control of a Microrobot Navigating within a 3D Blood Vessel along a Trajectory Delivered by a Joystick Device
Abstract
:1. Introduction
- A 3D control strategy for a microrobot that effectively rejects environmental disturbances and accurately tracks a reference trajectory is proposed,
- A 3D observer is developed to estimate the whole state of the microrobot with a desired decay rate performance,
- A joystick device is utilized to translate the operator’s movements into a desired trajectory to be imposed for the microrobot.
2. Modeling and Path Planning
2.1. Magnetic Microrobot Modeling
2.2. Path Planning with Joystick Device
3. Proposed Control Strategy
3.1. LMI-Based Design Approach
3.1.1. Observer Design
3.1.2. State Feedback Design
3.2. Stability Analysis
4. Simulation and Results
4.1. Comparative Study
4.2. Simulation with Joystick Device
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | Two-dimensional space |
3D | Three-dimensional space |
EMA | Electromagnetic Actuation |
LQ | Linear Quadratic |
GPC | generalized predictive Controller |
ISS | Input-to-State Stability |
MRI | Magnetic Resonance Imaging |
References
- Meng, K.; Jia, Y.; Yang, H.; Niu, F.; Wang, Y.; Sun, D. Motion planning and robust control for the endovascular navigation of a microrobot. IEEE Trans. Ind. Inform. 2019, 16, 4557–4566. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, L. Magnetic actuation systems for miniature robots: A review. Adv. Intell. Syst. 2020, 2, 2000082. [Google Scholar] [CrossRef]
- Yu, C.; Kim, J.; Choi, H.; Choi, J.; Jeong, S.; Cha, K.; Park, J.O.; Park, S. Novel electromagnetic actuation system for three-dimensional locomotion and drilling of intravascular microrobot. Sens. Actuators A Phys. 2010, 161, 297–304. [Google Scholar] [CrossRef]
- Larbi, M.; Guechi, E.H.; Chah, A.; Maidi, A.; Belharet, K. Sliding Mode Observer of a Two-Agent Microrobotic System. In Proceedings of the 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET), Hammamet, Tunisia, 22–25 March 2022; pp. 268–273. [Google Scholar]
- Koleoso, M.; Feng, X.; Xue, Y.; Li, Q.; Munshi, T.; Chen, X. Micro/nanoscale magnetic robots for biomedical applications. Mater. Today Bio 2020, 8, 100085. [Google Scholar] [CrossRef]
- Li, J.; Yu, J. Biodegradable Microrobots and Their Biomedical Applications: A Review. Nanomaterials 2023, 13, 1590. [Google Scholar] [CrossRef]
- Jamil, M.F.; Pokharel, M.; Park, K. Light-Controlled Microbots in Biomedical Application: A Review. Appl. Sci. 2022, 12, 11013. [Google Scholar] [CrossRef]
- Tottori, S.; Zhang, L.; Qiu, F.; Krawczyk, K.K.; Franco-Obregón, A.; Nelson, B.J. Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv. Mater. 2012, 24, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Yang, Z.; Ferreira, A.; Zhang, L. Control and autonomy of microrobots: Recent progress and perspective. Adv. Intell. Syst. 2022, 4, 2100279. [Google Scholar] [CrossRef]
- Dong, D.; Xing, L.; Zheng, L.; Jia, Y.; Sun, D. Automated 3-d electromagnetic manipulation of microrobot with a path planner and a cascaded controller. IEEE Trans. Control Syst. Technol. 2021, 30, 2672–2680. [Google Scholar] [CrossRef]
- Belharet, K.; Folio, D.; Ferreira, A. Three-dimensional controlled motion of a microrobot using magnetic gradients. Adv. Robot. 2011, 25, 1069–1083. [Google Scholar] [CrossRef] [Green Version]
- Belharet, K.; Folio, D.; Ferreira, A. Endovascular navigation of a ferromagnetic microrobot using MRI-based predictive control. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 2804–2809. [Google Scholar]
- Khamesee, M.B.; Kato, N.; Nomura, Y.; Nakamura, T. Design and control of a microrobotic system using magnetic levitation. IEEE/ASME Trans. Mechatron. 2002, 7, 1–14. [Google Scholar] [CrossRef]
- Ma, W.; Xu, M.; Zhong, Z.; Li, X.; Huan, Z. Closed-loop control for trajectory tracking of a microparticle based on input-to-state stability through an electromagnetic manipulation system. IEEE Access 2020, 8, 46537–46545. [Google Scholar] [CrossRef]
- Ma, W.; Li, J.; Niu, F.; Ji, H.; Sun, D. Robust control to manipulate a microparticle with electromagnetic coil system. IEEE Trans. Ind. Electron. 2017, 64, 8566–8577. [Google Scholar] [CrossRef]
- Mellal, L.; Folio, D.; Belharet, K.; Ferreira, A. Optimal control of multiple magnetic microbeads navigating in microfluidic channels. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1921–1926. [Google Scholar]
- Ghanbari, A.; Chang, P.H.; Nelson, B.J.; Choi, H. Electromagnetic steering of a magnetic cylindrical microrobot using optical feedback closed-loop control. Int. J. Optomechatron. 2014, 8, 129–145. [Google Scholar] [CrossRef]
- Ghanbari, A.; Chang, P.H.; Nelson, B.J.; Choi, H. Magnetic actuation of a cylindrical microrobot using time-delay-estimation closed-loop control: Modeling and experiments. Smart Mater. Struct. 2014, 23, 035013. [Google Scholar] [CrossRef]
- Belharet, K.; Folio, D.; Ferreira, A. 3D MRI-based predictive control of a ferromagnetic microrobot navigating in blood vessels. In Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, 26–29 September 2010; pp. 808–813. [Google Scholar]
- Belharet, K.; Folio, D.; Ferreira, A. Control of a magnetic microrobot navigating in microfluidic arterial bifurcations through pulsatile and viscous flow. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 2559–2564. [Google Scholar]
- Arcese, L.; Fruchard, M.; Ferreira, A. Endovascular magnetically guided robots: Navigation modeling and optimization. IEEE Trans. Biomed. Eng. 2011, 59, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Sadelli, L.; Fruchard, M.; Ferreira, A. 2D observer-based control of a vascular microrobot. IEEE Trans. Autom. Control 2016, 62, 2194–2206. [Google Scholar] [CrossRef] [Green Version]
- Martel, S. Nanorobots for Endovascular Target Interventions in Future Medical Practice. Curr. Adv. Med. Appl. Nanotechnol. 2012, 85. [Google Scholar]
- Huan, Z.; Ma, W.; Wang, J.; Wu, F. Path planning and optimization for microrobot in a vessel-mimic environment. Front. Neurorobotics 2022, 16, 923348. [Google Scholar] [CrossRef]
- Renon, P.; Yang, C.; Ma, H.; Cui, R. Haptic interaction between human and virtual icub robot using novint falcon with chai3d and matlab. In Proceedings of the 32nd Chinese Control Conference, Xi’an, China, 26–28 July 2013; pp. 6045–6050. [Google Scholar]
- Trucios, L.E.; Tavakoli, M.; Adams, K. Adaptive tracking control for task-based robot trajectory planning. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 4256–4260. [Google Scholar]
- Montero, D.; Páez, M.; Salinas, S. Teleoperation Prototype Using Novint Falcon Haptic Interfaces. In Proceedings of the VII Latin American Congress on Biomedical Engineering CLAIB 201, Bucaramanga, Colombia, 26–28 October 2016. [Google Scholar]
- Tuan, H.D.; Apkarian, P.; Narikiyo, T.; Yamamoto, Y. Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 2001, 9, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Yoneyama, J.; Nishikawa, M.; Katayama, H.; Ichikawa, A. Design of output feedback controllers for Takagi–Sugeno fuzzy systems. Fuzzy Sets Syst. 2001, 121, 127–148. [Google Scholar] [CrossRef]
- Wang, H.O.; Tanaka, K. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- David, I.; Robles, G. PID control dynamics of a Robotic arm manipulator with two degrees of Freedom. Control. Process. Robot. 2012, 3–7. [Google Scholar]
- Uang, H.J.; Huang, G. A robust fuzzy model following observer-based control design for nonlinear system. In Proceedings of the 2004 IEEE International Conference on Control Applications, Taipei, Taiwan, 2–4 September 2004; Volume 1, pp. 171–176. [Google Scholar]
- Chen, B.S.; Lee, C.H.; Chang, Y.C. H∞ tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach. IEEE Trans. Fuzzy Syst. 1996, 4, 32–43. [Google Scholar] [CrossRef]
- Zhang, F. The Schur Complement and Its Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
- Lofberg, J. YALMIP: A toolbox for modeling and optimization in Matlab. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508), Taipei, Taiwan, 2–4 September 2004; pp. 284–289. [Google Scholar]
Designation | Symbol | Value |
---|---|---|
Fluid viscosity | [Pa.s] | |
Robot density | 8 [kg/] | |
Robot Mass | m | [kg] |
Robot radius | r | [m] |
Magnetization | M | [A.] |
Designation | Symbol | Value |
---|---|---|
() | ||
() |
Designation | Symbol | Value |
---|---|---|
Decay rate | () | |
Attenuation parameter | () |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larbi, M.; Guechi, E.-H.; Maidi, A.; Belharet, K. Observer-Based Control of a Microrobot Navigating within a 3D Blood Vessel along a Trajectory Delivered by a Joystick Device. Machines 2023, 11, 738. https://doi.org/10.3390/machines11070738
Larbi M, Guechi E-H, Maidi A, Belharet K. Observer-Based Control of a Microrobot Navigating within a 3D Blood Vessel along a Trajectory Delivered by a Joystick Device. Machines. 2023; 11(7):738. https://doi.org/10.3390/machines11070738
Chicago/Turabian StyleLarbi, Meziane, El-Hadi Guechi, Ahmed Maidi, and Karim Belharet. 2023. "Observer-Based Control of a Microrobot Navigating within a 3D Blood Vessel along a Trajectory Delivered by a Joystick Device" Machines 11, no. 7: 738. https://doi.org/10.3390/machines11070738
APA StyleLarbi, M., Guechi, E. -H., Maidi, A., & Belharet, K. (2023). Observer-Based Control of a Microrobot Navigating within a 3D Blood Vessel along a Trajectory Delivered by a Joystick Device. Machines, 11(7), 738. https://doi.org/10.3390/machines11070738