Phasor-Like Interpretation of the Angular Velocity of the Wheels of Omnidirectional Mobile Robots
Abstract
:1. Introduction
New Contribution
2. Materials and Methods
2.1. Three-Wheeled Omni Mobile Robot (3WOMR)
2.2. Four-Wheeled Mecanum Mobile Robot (4WMMR)
2.3. Inverse Kinematics of a Three-Wheeled Omni Mobile Robot (3WOMR)
2.4. Inverse Kinematics of a Four-Wheeled Mecanum Mobile Robot (4WMMR)
3. Representation of the Angular Velocity of the Wheels of a 3WOMR
3.1. Example Trajectories for
3.2. Example Trajectories for
4. Representation of the Angular Velocity of the Wheels of a 4WMMR
4.1. Example Trajectories for
4.2. Example Trajectories for
5. Phasor-Like Interpretation of the Angular Velocity of the Wheels of a 3WOMR
6. Phasor-Like Interpretation of the Angular Velocity of the Wheels of a 4WMMR
7. Implementation of Multi-Wheeled Omnidirectional Mobile Robots
7.1. Asymmetric Three-Wheeled Omni Mobile Robot
7.2. Symmetric Four-Wheeled Omni Mobile Robot
7.3. Asymmetric Four-Wheeled Mecanum Mobile Robot
7.4. Eight-Wheeled Mecanum Mobile Robot
7.5. Hybrid Omnidirectional Mobile Robot
8. Discussion, Limitations, and Conclusions
8.1. Discussion
8.2. Limitations
8.3. Conclusions and Future Scope
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, L.; Qian, H.; Xing, K.; Xu, Y. Heavy-Payload Omnidirectional Robot. In Proceedings of the IEEE International Conference on Real-time Computing and Robotics, Angkor Wat, Cambodia, 6–10 June 2016. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, S.; Liu, J.; Chen, F.; Li, L.; Xia, B. Research on a new omnidirectional mobile platform with heavy loading and flexible motion. Adv. Mech. Eng. 2017, 9, 1687814017726683. [Google Scholar] [CrossRef]
- Gao, Z.Q.; Chen, H.B.; Du, Y.P.; Wei, L. Design and development of an omni-directional mobile robot for logistics. Appl. Mech. Mater 2014, 602–605, 1006–1010. [Google Scholar] [CrossRef]
- Qian, J.; Zi, B.; Wang, D.; Ma, Y.; Zhang, D. The Design and Development of an Omni-Directional Mobile Robot Oriented to an Intelligent Manufacturing System. Sensors 2017, 17, 2073. [Google Scholar] [CrossRef] [Green Version]
- Galati, R.; Mantriota, G.; Reina, G. Mobile Robotics for Sustainable Development: Two Case Studies. In Proceedings of the I4SDG Workshop 2021, Online, 25–26 November 2021. [Google Scholar] [CrossRef]
- Galati, R.; Mantriota, G.; Reina, G. Adaptive heading correction for an industrial heavy-duty omnidirectional robot. Sci. Rep. 2022, 12, 19608. [Google Scholar] [CrossRef]
- Dickerson, S.L.; Lapin, B.D. Control of an omni-directional robotic vehicle with Mecanum wheels. In Proceedings of the Telesystems Conference, Atlanta, GA, USA, 26–27 March 1991. [Google Scholar] [CrossRef]
- Pin, F.G.; Killough, S.M. A new family of omnidirectional and holonomic wheeled platform for mobile robots. IEEE Trans. Robot. Autom 1994, 10, 480–489. [Google Scholar] [CrossRef] [Green Version]
- Purwin, O.; D’Andrea, R. Trajectory generation and control for four wheeled omnidirectional vehicles. Robot. Auton. Syst. 2006, 54, 13–22. [Google Scholar] [CrossRef]
- Kim, K.B.; Kim, B.K. Minimum-Time Trajectory for Three-Wheeled Omnidirectional Mobile Robots Following a Bounded-Curvature Path With a Referenced Heading Profile. IEEE Trans. Robot. 2011, 27, 800–808. [Google Scholar] [CrossRef]
- Li, W.; Yang, C.; Jiang, Y.; Liu, X.; Su, C. Motion Planning for Omnidirectional Wheeled Mobile Robot by Potential Field Method. J. Adv. Transport. 2017, 2017, 4961383. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, X.; Yang, X.; Hu, F.; Jiang, A.; Yang, C. Trajectory Tracking of an Omni-Directional Wheeled Mobile Robot Using a Model Predictive Control Strategy. Appl. Sci. 2018, 8, 231. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Hu, H.; Fu, Y. Trajectory tracking for omnidirectional mecanum robot with longitudinal slipping. In Proceedings of the MATEC Web of Conferences, Wuhan, China, 10–12 November 2018. [Google Scholar] [CrossRef] [Green Version]
- Palacín, J.; Rubies, E.; Clotet, E.; Martínez, D. Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional Mobile Robot Designed as a Personal Assistant. Sensors 2021, 21, 7216. [Google Scholar] [CrossRef] [PubMed]
- Tagliavini, L.; Colucci, G.; Botta, A.; Cavallone, P.; Baglieri, L.; Quaglia, G. Wheeled Mobile Robots: State of the Art Overview and Kinematic Comparison Among Three Omnidirectional Locomotion Strategies. J. Intell. Robot. Syst. 2022, 106, 57. [Google Scholar] [CrossRef] [PubMed]
- Grabowiecki, J. Vehicle Wheel. US Patent 1305535A, 3 June 1919. [Google Scholar]
- Blumrich, J.F. Omnidirectional Wheel. US Patent 3789947, 5 February 1972. [Google Scholar]
- Palacín, J.; Martínez, D.; Rubies, E.; Clotet, E. Suboptimal Omnidirectional Wheel Design and Implementation. Sensors 2021, 21, 865. [Google Scholar] [CrossRef]
- Indiveri, G. Swedish Wheeled Omnidirectional Mobile Robots: Kinematics Analysis and Control. IEEE Trans. Robot. 2009, 25, 164–171. [Google Scholar] [CrossRef]
- Ilon, B.B. Wheels for a Course Stable Selfpropelling Vehicle Movable in Any Desired Direction on the Ground or Some Other Base. US Patent 3876255A, 8 April 1975. [Google Scholar]
- Diegel, O.; Badve, A.; Bright, G.; Potgieter, J.; Tlale, S. Improved mecanum wheel design for omni-directional robots. In Proceedings of the Australian Conference on Robotics and Automation, Auckland, Australia, 27–29 November 2002. [Google Scholar]
- Gao, X.; Wang, Y.; Zhou, D.; Kikuchi, K. Floor-cleaning robot using omni-directional wheels. Ind. Robot. 2009, 36, 157–164. [Google Scholar] [CrossRef]
- Li, Y.; Dai, S.; Zhao, L.; Yan, X.; Shi, Y. Topological Design Methods for Mecanum Wheel Configurations of an Omnidirectional Mobile Robot. Symmetry 2019, 11, 1268. [Google Scholar] [CrossRef] [Green Version]
- Racz, S.-G.; Crenganis, M.; Barsan, A.; Marosan, I.-A. Omnidirectional autonomous mobile robot with mecanum wheel. In Proceedings of the International Student Innovation and Scientific Research Exhibition, 11–13 April 2019. [Google Scholar]
- Almasri, E.; Uyguroğlu, M.K. Modeling and Trajectory Planning Optimization for the Symmetrical Multiwheeled Omnidirectional Mobile Robot. Symmetry 2021, 13, 1033. [Google Scholar] [CrossRef]
- Mohanraj, A.P.; Elango, A.; Reddy, M.C. Front and back movement analysis of a triangle-structured three-wheeled omnidirectional mobile robot by varying the angles between two selected wheels. Sci. World J. 2016, 2016, 7612945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palacín, J.; Rubies, E.; Clotet, E. The Assistant Personal Robot Project: From the APR-01 to the APR-02 Mobile Robot Prototypes. Designs 2022, 6, 66. [Google Scholar] [CrossRef]
- Guo, Y. A new kind of wheel-model all-directional moving mechanism. J. Harbin Inst. Technol. 2001, 33, 854–857. [Google Scholar]
- Mohd Salih, J.E.; Rizon, M.J.M.; Yaacob, S.; Adom, A.H.; Mamat, M.R. Designing omni-directional mobile robot with mecanum wheel. Am. J. Appl. Sci. 2006, 3, 1831–1835. [Google Scholar] [CrossRef]
- Hijikata, M.; Miyagusuku, R.; Ozaki, K. Omni Wheel Arrangement Evaluation Method Using Velocity Moments. Appl. Sci. 2023, 13, 1584. [Google Scholar] [CrossRef]
- Moore, K.L.; Flann, N.S. A six-wheeled omnidirectional autonomous mobile robot. IEEE Control Syst. Mag. 2000, 20, 53–66. [Google Scholar] [CrossRef]
- Moore, K.L.; Davidson, M.; Bahl, V.; Rich, S.; Jirgal, S. Modelling and control of a six-wheeled autonomous robot. In Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), Chicago, IL, USA, 28–30 June 2000. [Google Scholar] [CrossRef]
- Huang, Y.; Meng, R.; Yu, J.; Zhao, Z.; Zhang, X. Practical Obstacle-Overcoming Robot with a Heterogeneous Sensing System: Design and Experiments. Machines 2022, 10, 289. [Google Scholar] [CrossRef]
- Tian, P.; Zhang, Y.N.; Zhang, J.; Yan, N.M.; Zeng, W. Research on Simulation of Motion Compensation for 8×8 Omnidirectional Platform Based on Back Propagation Network. Appl. Mech. Mater. 2013, 299, 44–47. [Google Scholar] [CrossRef]
- Fornarelli, L.; Young, J.; McKenna, T.; Koya, E.; Hedley, J. Stastaball: Design and Control of a Statically Stable Ball Robot. Robotics 2023, 12, 34. [Google Scholar] [CrossRef]
- Schröder, K.; Garcia, G.; Chacón, R.; Montenegro, G.; Marroquín, A.; Farias, G.; Dormido-Canto, S.; Fabregas, E. Development and Control of a Real Spherical Robot. Sensors 2023, 23, 3895. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Q.; Cai, Y.; Yan, C. Design, analysis and experiments of an omni-directional spherical robot. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011. [Google Scholar] [CrossRef]
- Zhang, L.; Kim, J.; Sun, J. Energy modeling and experimental validation of four-wheel mecanum mobile robots for energy-optimal motion control. Symmetry 2019, 11, 1372. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Zhang, L.; Kim, J. Energy Modeling and Power Measurement for Three-Wheeled Omnidirectional Mobile Robots for Path Planning. Electronics 2019, 8, 843. [Google Scholar] [CrossRef] [Green Version]
- Samani, H.A.; Abdollahi, A.; Ostadi, H.; Rad, S.Z. Design and Development of a Comprehensive Omni Directional Soccer Player Robot. Int. J. Adv. Robot. Syst. 2004, 1, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Tianran Peng, J.Q.; Qian, J.; Zi, B.; Liu, J.; Wang, X. Mechanical Design and Control System of an Omni-directional Mobile Robot for Material Conveying. Procedia CIRP 2016, 56, 412–415. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.J.; Kang, N. Design Optimization of a Mecanum Wheel to Reduce Vertical Vibrations by the Consideration of Equivalent Stiffness. Shock Vib. 2016, 2016, 5892784. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhang, H.; Cheng, T.; Ni, X.; Wu, C.; Zong, H.; Lu, H.; Lu, Z.; Shen, Y. An Omnidirectional and Movable Palletizing Robot based on Computer Vision Positing. In Proceedings of the IEEE International Conference on Intelligence and Safety for Robotics (ISR), Shenyang, China, 24–27 August 2018. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, G.; Su, X.; Schwager, M. OuijaBots: Omnidirectional Robots for Cooperative Object Transport with Rotation Control Using No Communication. In Distributed Autonomous Robotic Systems; Springer: Cham, Switzerland, 2018; pp. 117–131. [Google Scholar] [CrossRef]
- Omnidirectional Robots for Cooperative Object Transport. Available online: https://youtu.be/4nLMYjqUoJ4 (accessed on 1 April 2023).
- Li, Y.; Ge, S.; Dai, S.; Zhao, L.; Yan, X.; Zheng, Y.; Shi, Y. Kinematic Modeling of a Combined System of Multiple Mecanum-Wheeled Robots with Velocity Compensation. Sensors 2020, 20, 75. [Google Scholar] [CrossRef] [Green Version]
- Eirale, A.; Martini, M.; Tagliavini, L.; Gandini, D.; Chiaberge, M.; Quaglia, G. Marvin: An Innovative Omni-Directional Robotic Assistant for Domestic Environments. Sensors 2022, 22, 5261. [Google Scholar] [CrossRef]
- Siradjuddin, I.; Azhar, G.A.; Wibowo, S.; Ronilaya, F.; Rahmad, C.; Rohadi, E. A General Inverse Kinematic Formulation and Control Schemes for Omnidirectional Robots. Eng. Lett. 2021, 29, 1344–1358. [Google Scholar]
- Steinmetz, C.P.; Berg, E.J. Complex Quantities and Their Use in Electrical Engineering. In Proceedings of the International Electrical Congress, AIEE, Chicago, IL, USA, 21–25 August 1893. [Google Scholar]
- Steinmetz, C.P.; Berg, E.J. Theory and Calculation of Alternating Current Phenomena, 1st ed.; The W. J. Johnston Company: New York, NY, USA, 1897. [Google Scholar]
- Hijikata, M.; Miyagusuku, R.; Ozaki, K. Wheel Arrangement of Four Omni Wheel Mobile Robot for Compactness. Appl. Sci. 2022, 12, 5798. [Google Scholar] [CrossRef]
- Palacín, J.; Clotet, E.; Martínez, D.; Martínez, D.; Moreno, J. Extending the Application of an Assistant Personal Robot as a Walk-Helper Tool. Robotics 2019, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Bitriá, R.; Palacín, J. Optimal PID Control of a Brushed DC Motor with an Embedded Low-Cost Magnetic Quadrature Encoder for Improved Step Overshoot and Undershoot Responses in a Mobile Robot Application. Sensors 2022, 22, 7817. [Google Scholar] [CrossRef]
- Palacín, J.; Rubies, E.; Clotet, E. Systematic Odometry Error Evaluation and Correction in a Human-Sized Three-Wheeled Omnidirectional Mobile Robot Using Flower-Shaped Calibration Trajectories. Appl. Sci. 2022, 12, 2606. [Google Scholar] [CrossRef]
- OSOYOO ZZ012318MC Mecanum Robotic Kit. Available online: https://osoyoo.com/2019/11/08/omni-direction-mecanum-wheel-robotic-kit-v1/ (accessed on 1 April 2023).
- Dhanasekar, R.; Kolachalama, N.; Mahmud, S.; Mishkevich, E.; Tan, A. Optimization of Four-Way Controlled Intersections with Autonomous and Human-Driven Vehicles. In Proceedings of the IEEE MIT Undergraduate Research Technology Conference (URTC), Cambridge, MA, USA, 5–7 October 2018. [Google Scholar] [CrossRef]
- Bajracharya, B.; Gondi, V.; Hua, D. IoT Education Using Learning Kits of IoT Devices. Inf. Syst. Educ. J. 2021, 19, 40–44. [Google Scholar]
- Almassri, A.M.M.; Shirasawa, N.; Purev, A.; Uehara, K.; Oshiumi, W.; Mishima, S.; Wagatsuma, H. Artificial Neural Network Approach to Guarantee the Positioning Accuracy of Moving Robots by Using the Integration of IMU/UWB with Motion Capture System Data Fusion. Sensors 2022, 22, 5737. [Google Scholar] [CrossRef]
- Georgeon, O.; Vidal, J.R.; Knockaert, T.; Robertson, P. Simultaneous Localization and Active Phenomenon Inference (SLAPI). In Proceedings of the Third International Workshop on Self-Supervised Learning, Reykjavik, Iceland, 28–29 July 2022. [Google Scholar]
- Dosoftei, C.C.; Popovici, A.T.; Sacaleanu, P.R.; Gherghel, P.M.; Budaciu, C. Hardware in the Loop Topology for an Omnidirectional Mobile Robot Using Matlab in a Robot Operating System Environment. Symmetry 2021, 13, 969. [Google Scholar] [CrossRef]
- Popovici, A.-T.; Dosoftei, C.-C.; Budaciu, C. Kinematics Calibration and Validation Approach Using Indoor Positioning System for an Omnidirectional Mobile Robot. Sensors 2022, 22, 8590. [Google Scholar] [CrossRef] [PubMed]
- Fourier, J.B.J. Theorie Analytique de la Chaleur; Didot: Paris, France, 1822; pp. 499–508, (Translated in The Analytical Theory of Heat; Freeman, A., Translator; Dover Publications: New York, NY, USA, 2003; ISBN 0-486-49531-0). [Google Scholar]
- Zygmund, A. Trigonometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
- Rudin, W. Principles of Mathematical Analysis; McGraw-Hill: New York, USA, 1976. [Google Scholar]
- Baca, J.; Yerpes, A.; Ferre, M.; Escalera, J.A.; Aracil, R. Modelling of Modular Robot Configurations Using Graph Theory. In Hybrid Artificial Intelligence Systems. HAIS 2008; Corchado, E., Abraham, A., Pedrycz, W., Eds.; Springer: Berlin, Germany, 2008; Volume 5271. [Google Scholar] [CrossRef] [Green Version]
- Pagala, P.; Ferre, M.; Armada, M. Design of Modular Robot System for Maintenance Tasks in Hazardous Facilities and Environments. In ROBOT2013: First Iberian Robotics Conference. Advances in Intelligent Systems and Computing; Armada, M., Sanfeliu, A., Ferre, M., Eds.; Springer: Cham, Switzerland, 2014; Volume 253. [Google Scholar] [CrossRef]
Parameter | Symbol | Value (m) |
---|---|---|
Chassis radius | 0.2790 | |
Wheel radius | 0.1480 | |
Wheel width | 0.0465 | |
Distance between the centroids of the robot and the wheels | 0.1950 | |
Angle between and the line joining the centroids of the robot and the wheels | [60, 180, 300]° | |
Angle between the rolling direction of the passive rollers and the wheels axis | 0° |
Parameter | Symbol | Value (m) |
---|---|---|
Chassis width | 0.2000 | |
Chassis height | 0.1550 | |
Wheel radius | 0.0375 | |
Wheel width | 0.0350 | |
Distance between the centroids of the robot and the wheels | 0.1163 | |
Coordinates of the wheel centers relative to the robot frame | (0.05, 0.105)1 (−0.05, 0.105)2 (−0.05, −0.105)3 (0.05, −0.105)4 | |
Unsigned representation of the wheel center coordinates | (0.05, 0.105) | |
Angle between and the line joining the centroids of the robot and the wheels | [64.5367, 115.4633, 244.5367, 295.4633] | |
Angle between the rolling direction of the passive rollers and the wheels axis | [−45 45 −45 45]° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacín, J.; Rubies, E.; Bitriá, R.; Clotet, E. Phasor-Like Interpretation of the Angular Velocity of the Wheels of Omnidirectional Mobile Robots. Machines 2023, 11, 698. https://doi.org/10.3390/machines11070698
Palacín J, Rubies E, Bitriá R, Clotet E. Phasor-Like Interpretation of the Angular Velocity of the Wheels of Omnidirectional Mobile Robots. Machines. 2023; 11(7):698. https://doi.org/10.3390/machines11070698
Chicago/Turabian StylePalacín, Jordi, Elena Rubies, Ricard Bitriá, and Eduard Clotet. 2023. "Phasor-Like Interpretation of the Angular Velocity of the Wheels of Omnidirectional Mobile Robots" Machines 11, no. 7: 698. https://doi.org/10.3390/machines11070698
APA StylePalacín, J., Rubies, E., Bitriá, R., & Clotet, E. (2023). Phasor-Like Interpretation of the Angular Velocity of the Wheels of Omnidirectional Mobile Robots. Machines, 11(7), 698. https://doi.org/10.3390/machines11070698