Assessment of a Second Life City Vehicle Refurbished to Include Hybrid Powertrain Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vehicle Model
2.2. Internal Combustion Engine Model
2.3. Routes
2.4. Validation and Performance Procedure
2.5. Life Cycle Analysis Database
3. Results
3.1. Performance
3.2. Life Cycle Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, H.; Sarwar, S.; Kirli, D.; Shek, J.K.H.; Kiprakis, A.E. A Survey of Second-Life Batteries Based on Techno-Economic Perspective and Applications-Based Analysis. Carbon Neutrality 2023, 2, 8. [Google Scholar] [CrossRef]
- Blat Belmonte, B.; Esser, A.; Weyand, S.; Franke, G.; Schebek, L.; Rinderknecht, S. Identification of the Optimal Passenger Car Vehicle Fleet Transition for Mitigating the Cumulative Life-Cycle Greenhouse Gas Emissions until 2050. Vehicles 2020, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Emadi, A.; Rajashekara, K.; Williamson, S.S.; Lukic, S.M. Topological Overview of Hybrid Electric and Fuel Cell Vehicular Power System Architectures and Configurations. IEEE Trans. Veh. Technol. 2005, 54, 763–770. [Google Scholar] [CrossRef]
- Nguyen, B.H.; Trovao, J.P.; German, R.; Bouscayrol, A.; Goulet, Y. Optimal Energy Management of a Parallel Hybrid Truck for Fuel Consumption Comparative Study. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Kim, D.-M.; Benoliel, P.; Kim, D.-K.; Lee, T.H.; Park, J.W.; Hong, J.-P. Framework Development of Series Hybrid Powertrain Design for Heavy-Duty Vehicle Considering Driving Conditions. IEEE Trans. Veh. Technol. 2019, 68, 6468–6480. [Google Scholar] [CrossRef]
- Solouk, A.; Shakiba-Herfeh, M.; Arora, J.; Shahbakhti, M. Fuel Consumption Assessment of an Electrified Powertrain with a Multi-Mode High-Efficiency Engine in Various Levels of Hybridization. Energy Convers. Manag. 2018, 155, 100–115. [Google Scholar] [CrossRef]
- García, A.; Monsalve-Serrano, J.; Lago Sari, R.; Martinez-Boggio, S. An Optical Investigation of Thermal Runway Phenomenon under Thermal Abuse Conditions. Energy Convers. Manag. 2021, 246, 114663. [Google Scholar] [CrossRef]
- Martinez, S.; Merola, S.; Irimescu, A. Flame Front and Burned Gas Characteristics for Different Split Injection Ratios and Phasing in an Optical GDI Engine. Appl. Sci. 2019, 9, 449. [Google Scholar] [CrossRef] [Green Version]
- García, A.; Monsalve-serrano, J.; Sari, R.L.; Martinez-boggio, S. Energy Sustainability in the Transport Sector Using Synthetic Fuels in Series Hybrid Trucks with RCCI Dual-Fuel Engine. Fuel 2022, 308, 122024. [Google Scholar] [CrossRef]
- Solouk, A.; Shahbakhti, M. Energy Optimization and Fuel Economy Investigation of a Series Hybrid Electric Vehicle Integrated with Diesel/RCCI Engines. Energies 2016, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Donateo, T.; Ingrosso, F.; Lacandia, F.; Pagliara, E. Impact of Hybrid and Electric Mobility in a Medium-Sized Historic City; SAE Technical Paper; SAE: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Bingham, C.; Walsh, C.; Carroll, S. Impact of Driving Characteristics on Electric Vehicle Energy Consumption and Range. IET Intell. Transp. Syst. 2012, 6, 29–35. [Google Scholar] [CrossRef]
- Manica, L.; Croitorescu, V. Smart ForTwo Electric Conversion. In Proceedings of the 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION), Side, Turkey, 2–4 September 2015; pp. 731–736. [Google Scholar]
- Vella, A.D.; Vigliani, A.; Tota, A.; Lisitano, D. Experimental Ride Comfort Analysis of an Electric Light Vehicle in Urban Scenario; SAE Technical Paper; SAE: Warrendale, PA, USA, 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Orecchini, F.; Santiangeli, A. CHAPTER TWENTY TWO—Automakers’ Powertrain Options for Hybrid and Electric Vehicles. In Electric and Hybrid Vehicles; Pistoia, G., Ed.; Elsevier: Amsterdam, The Netherland, 2010; pp. 579–636. ISBN 978-0-444-53565-8. [Google Scholar]
- Martinez-Boggio, S. Study of the Potential of Electrified Powertrains with Dual Fuel Combustin to Achieve 2025 Emissions Targets in Heavy-Duty Applications. Ph.D. Thesis, Universitat Politecnica de Valencia, Valencia, Spain, 2022. [Google Scholar]
- JSOL-Corporation Motor Design Tool Jmag International. Available online: https://www.jmag-international.com/express/ (accessed on 15 April 2023).
- Irimescu, A.; Mihon, L.; Padure, G. Automotive transmission efficiency measurements using a chassis dynamometer. Int. J. Automot. Technol. 2011, 13, 293–300. [Google Scholar] [CrossRef]
- Irimescu, A.; Vaglieco, B.M.; Merola, S.; Zollo, V.; De Marinis, R. Conversion of a Small Size Passenger Car to Hydrogen Fueling: Focus on Rated Power and Injection Phasing Effects; SAE Technical Paper; SAE: Warrendale, PA, USA, 2022. [Google Scholar] [CrossRef]
- Irimescu, A.; Vaglieco, B.M.; Merola, S.S.; Zollo, V.; De Marinis, R. Conversion of a Small-Size Passenger Car to Hydrogen Fueling: Simulation of CCV and Evaluation of Cylinder Imbalance. Machines 2023, 11, 135. [Google Scholar] [CrossRef]
- Serrano, J.R.; García, A.; Monsalve-Serrano, J.; Martínez-Boggio, S. High Efficiency Two Stroke Opposed Piston Engine for Plug-in Hybrid Electric Vehicle Applications: Evaluation under Homologation and Real Driving Conditions. Appl. Energy 2021, 282, 116078. [Google Scholar] [CrossRef]
- Info, C. Smart ForTwo Specifications. Available online: https://www.car.info/en-se/smart/fortwo/fortwo-2002-10661259/specs (accessed on 17 April 2023).
- García, A.; Monsalve-Serrano, J.; Martinez-Boggio, S.; Soria Alcaide, R. Carbon Footprint of Battery Electric Vehicles Considering Average and Marginal Electricity Mix. Energy 2023, 268, 126691. [Google Scholar] [CrossRef]
- García, A.; Monsalve-Serrano, J.; Martinez-Boggio, S.; Tripathi, S. Techno-Economic Assessment of Vehicle Electrification in the Six Largest Global Automotive Markets. Energy Convers. Manag. 2022, 270, 116273. [Google Scholar] [CrossRef]
Parameter | Non-Hybrid | P2 | Series | Electric |
---|---|---|---|---|
Gross Weight [Kg] | 720 | 822 | 1083 | 1095 |
Frontal Area [m2] | 1.99 | |||
Drag Coefficient | 0.37 | |||
Internal Combustion Engine Type | 3 Cyl/PFI/Gasoline/Turbocharger | - | ||
Fuel Tank Capacity [lt] | 33 | 22 | 0 | |
Electric Motor Type | - | Permanent Magnet AC Synchronous motor | ||
Rated Power ICE/EM [kW] | 40/- | 40/20 | 40/60+40 | -/60 |
EM Weight TM/Gen [kg] | - | 66 | 198/132 | 198 |
Inverter Weight [kg] | - | 10 | 20 | 40 |
Battery Type | - | Cylindrical with LFP cathode | Cylindrical with NMC cathode | |
Battery Capacity [kWh] | - | 1.98 | 3.96 | 20.00 |
Battery System Volume [L]/mass [kg] | - | 10/26 | 21/53 | 80/133 |
Country | Route Type | Number of Routes | Total Distance [km] | Average Distance [km] | Average Time [min] | Average Speed [km/h] | Vapos95 [m2/s3] |
---|---|---|---|---|---|---|---|
Spain | Urban | 10 | 148 | 14.8 | 35.9 | 20.0 | 23.0 |
France | Urban | 10 | 151 | 15.1 | 45.0 | 15.5 | 19.3 |
Component | CO2 Associated |
---|---|
Gasoline WTT CO2 Emissions [gCO2/MJFuel] | 13.1 [23] |
Electricity WTT Marginal CO2 Spain/France Emissions [gCO2/MJFuel] | 600/200 [23] |
Battery Manufacturing CO2 Emissions [gCO2/kWh] | 150,000 [24] |
EM Manufacturing CO2 Emissions [gCO2/kW] | 8283 [24] |
Vehicle body CO2 Emissions [gCO2/kgcomponent] | 2540 [24] |
Vehicle Life [km] | 150,000 [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Boggio, S.; Irimescu, A.; Curto-Risso, P.; Merola, S.S. Assessment of a Second Life City Vehicle Refurbished to Include Hybrid Powertrain Technology. Machines 2023, 11, 699. https://doi.org/10.3390/machines11070699
Martinez-Boggio S, Irimescu A, Curto-Risso P, Merola SS. Assessment of a Second Life City Vehicle Refurbished to Include Hybrid Powertrain Technology. Machines. 2023; 11(7):699. https://doi.org/10.3390/machines11070699
Chicago/Turabian StyleMartinez-Boggio, Santiago, Adrian Irimescu, Pedro Curto-Risso, and Simona Silvia Merola. 2023. "Assessment of a Second Life City Vehicle Refurbished to Include Hybrid Powertrain Technology" Machines 11, no. 7: 699. https://doi.org/10.3390/machines11070699
APA StyleMartinez-Boggio, S., Irimescu, A., Curto-Risso, P., & Merola, S. S. (2023). Assessment of a Second Life City Vehicle Refurbished to Include Hybrid Powertrain Technology. Machines, 11(7), 699. https://doi.org/10.3390/machines11070699