A New Self-Reconfiguration Wave-like Crawling Robot: Design, Analysis, and Experiments
Abstract
:1. Introduction
- 1.
- The wave-like crawling mechanism was applied in the SWC robot and improved the robot’s ability to move on various surfaces and around multiple obstacles.
- 2.
- The series and parallel connections were designed to achieve self-reconfiguration so that the SWC robots can cooperate to perform complicated tasks.
- 3.
- The kinematic model of the parallel-connected SWC robot was established to provide a basis for future work.
2. Mechanical Design
2.1. The Wave-like Crawling Mechanism’s Design
2.2. The Connection Design
3. Kinematic Modeling
4. Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fragapane, G.; De Koster, R.; Sgarbossa, F.; Strandhagen, J.O. Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda. Eur. J. Oper. Res. 2021, 294, 405–426. [Google Scholar] [CrossRef]
- Reid, C.R.; Lutz, M.J.; Powell, S.; Kao, A.B.; Couzin, I.D.; Garnier, S. Army ants dynamically adjust living bridges in response to a cost–benefit trade-off. Proc. Natl. Acad. Sci. USA 2015, 112, 15113–15118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moubarak, P.; Ben-Tzvi, P. Modular and reconfigurable mobile robotics. Robot. Auton. Syst. 2012, 60, 1648–1663. [Google Scholar] [CrossRef]
- Groß, R.; Bonani, M.; Mondada, F.; Dorigo, M. Autonomous self-assembly in swarm-bots. IEEE Trans. Robot. 2006, 22, 1115–1130. [Google Scholar]
- Zhu, W.; Guo, X.; Fang, Y.; Zhang, X. A path-integral-based reinforcement learning algorithm for path following of an autoassembly mobile robot. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 4487–4499. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Lam, T.L. SnailBot: A continuously dockable modular self-reconfigurable robot using rocker-bogie suspension. In Proceedings of the IEEE 2022 International Conference on Robotics and Automation, Philadelphia, PA, USA, 23–27 May 2022; pp. 4261–4267. [Google Scholar]
- Zhang, H.; Salvietti, G.; Wang, W.; Li, G.; Yu, J.; Zhang, J. Efficient kinematic solution to a multi-robot with serial and parallel mechanisms. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 6101–6106. [Google Scholar]
- Li, H.; Wang, H.; Cui, L.; Li, J.; Wei, Q.; Xia, J. Design and experiments of a compact self-assembling mobile modular robot with joint actuation and onboard visual-based perception. Appl. Sci. 2022, 12, 3050. [Google Scholar] [CrossRef]
- Mahkam, N.; Bakir, A.; Özcan, O. Miniature modular legged robot with compliant backbones. IEEE Robot. Autom. Lett. 2020, 5, 3923–3930. [Google Scholar] [CrossRef]
- Ozkan-Aydin, Y.; Goldman, D.I. Self-reconfigurable multilegged robot swarms collectively accomplish challenging terradynamic tasks. Sci. Robot. 2021, 6, 1628. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, M.; Ye, Z.; Wang, C. Path planning for self-reconfigurable modular robots: A survey. Sci. Sin. Inform. 2018, 48, 143–176. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Zhang, Q.; Lin, G.; Yin, J. Switchable adhesion actuator for amphibious climbing soft robot. Soft Robot. 2018, 5, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Ji, Q.; Huang, M.; Chang, L.; Zhang, C.; Wu, G.; Zi, B.; Bao, N.; Chen, W.; Wu, Y. Light-driven self-oscillating actuators with phototactic locomotion based on black phosphorus heterostructure. Angew. Chem. Int. Ed. 2021, 60, 20511–20517. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Yamauchi, Y.; Araoka, F.; Kim, Y.S.; Bergueiro, J.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Aida, T. An anisotropic hydrogel actuator enabling earthworm-like directed peristaltic crawling. Angew. Chem. 2018, 130, 15998–16002. [Google Scholar] [CrossRef]
- Rothemund, P.; Ainla, A.; Belding, L.; Preston, D.J.; Kurihara, S.; Suo, Z.; Whitesides, G.M. A soft, bistable valve for autonomous control of soft actuators. Sci. Robot. 2018, 3, 7986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Zhang, L.; Li, W.; Yang, G.Z. Design and fabrication of a 3-D printed metallic flexible joint for snake-like surgical robot. IEEE Robot. Autom. Lett. 2019, 4, 1557–1563. [Google Scholar] [CrossRef]
- Zhang, D.; Yuan, H.; Cao, Z. Environmental adaptive control of a snake-like robot with variable stiffness actuators. IEEE/CAA J. Autom. Sin. 2020, 7, 745–751. [Google Scholar] [CrossRef]
- Zarrouk, D.; Mann, M.; Degani, N.; Yehuda, T.; Jarbi, N.; Hess, A. Single actuator wave-like robot (SAW): Design, modeling, and experiments. Bioinspir. Biomimetics 2016, 11, 046004. [Google Scholar] [CrossRef] [PubMed]
- Drory, L.H.; Zarrouk, D. Locomotion dynamics of a miniature wave-like robot, modeling and experiments. In Proceedings of the IEEE 2019 International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019; pp. 8422–8428. [Google Scholar]
- Shachaf, D.; Inbar, O.; Zarrouk, D. RSAW, a highly reconfigurable wave robot: Analysis, design, and experiments. IEEE Robot. Autom. Lett. 2019, 4, 4475–4482. [Google Scholar] [CrossRef]
- Katz, R.; Shachaf, D.; Zarrouk, D. Energy-based design optimization of a miniature wave-like robot inside curved compliant tubes. IEEE Robot. Autom. Lett. 2022, 7, 12427–12434. [Google Scholar] [CrossRef]
- Neubert, J.; Lipson, H. Soldercubes: A self-soldering self-reconfiguring modular robot system. Auton. Robot. 2016, 40, 139–158. [Google Scholar] [CrossRef]
- Nisser, M.; Cheng, L.; Makaram, Y.; Suzuki, R.; Mueller, S. ElectroVoxel: Electromagnetically actuated pivoting for scalable modular self-reconfigurable robots. In Proceedings of the IEEE 2022 International Conference on Robotics and Automation, Philadelphia, PA, USA, 23–27 May 2022; pp. 4254–4260. [Google Scholar]
- Dhaouadi, R.; Hatab, A.A. Dynamic modelling of differential-drive mobile robots using lagrange and newton-euler methodologies: A unified framework. Adv. Robot. Autom. 2013, 2, 1–7. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Wu, Q.; Wang, X.; Yang, T.; Sun, N. A New Self-Reconfiguration Wave-like Crawling Robot: Design, Analysis, and Experiments. Machines 2023, 11, 398. https://doi.org/10.3390/machines11030398
Sun H, Wu Q, Wang X, Yang T, Sun N. A New Self-Reconfiguration Wave-like Crawling Robot: Design, Analysis, and Experiments. Machines. 2023; 11(3):398. https://doi.org/10.3390/machines11030398
Chicago/Turabian StyleSun, Haosheng, Qingxiang Wu, Xuebing Wang, Tong Yang, and Ning Sun. 2023. "A New Self-Reconfiguration Wave-like Crawling Robot: Design, Analysis, and Experiments" Machines 11, no. 3: 398. https://doi.org/10.3390/machines11030398
APA StyleSun, H., Wu, Q., Wang, X., Yang, T., & Sun, N. (2023). A New Self-Reconfiguration Wave-like Crawling Robot: Design, Analysis, and Experiments. Machines, 11(3), 398. https://doi.org/10.3390/machines11030398