Novel Feature Extraction and Locomotion Mode Classification Using Intelligent Lower-Limb Prosthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Processing
2.1.1. Data Collection
2.1.2. Gait Phase Variable
2.1.3. Knee Angle and GRF value
2.2. Feature Distributions and Extractions
2.2.1. Thigh Phase Diagram Shape (TPDS)
2.2.2. Knee Angle Trajectory (KAT)
2.2.3. Center Position Offset (CPO)
2.2.4. Ground Reaction Force Peak Value (GRFPV)
3. Results
3.1. ST Classifier
3.2. ANN Classifier
4. Discussion
4.1. Network Hyperparameters
4.2. Ramp Slope
4.3. Time Window Length
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Abbreviations | Full Names | Abbreviations | Full Names |
---|---|---|---|
LW | level walking | SA | stair ascent |
SD | stair descent | RA | ramp ascent |
RD | ramp descent | ST | standing |
TPDS | thigh phase diagram shape | KAT | knee angle trajectory |
CPO | center position offset | GRFPV | ground reaction force peak value |
ANN | artificial neural network | WHO | world health organization |
LLA | lower-limb amputation | PR | pattern recognition |
ML | machine learning | sEMG | surface electromyogram |
EFRS | environmental feature recognition system | LDA | linear discriminant analysis |
QDA | quadratic discriminant analysis | GMM | Gaussian mixture model |
DBN | dynamic Bayesian network | IMU | inertial measurement unit |
GRF | ground reaction force | CNN | convolutional neural network |
DL-based | deep learning based | LG | level ground |
M | man | W | woman |
DT | dynamic trend |
References
- Filmer, D. Disability, Poverty, and Schooling in Developing Countries. Soc. Sci. Electron. Publ. Vol. 2008, 22, 141–163. [Google Scholar]
- Au, S.K.; Weber, J.; Herr, H.M. Powered Ankle—Foot Prosthesis Improves Walking Metabolic Economy. IEEE Trans. Robot. 2009, 25, 51–66. [Google Scholar] [CrossRef]
- Wang, Q.N.; Zheng, E.H.; Chen, B.J.; Mai, J.G. Recent Progress and Challenges of Robotic Lower-limb Prostheses for Human-robot Integration. Acta Autom. Sin. 2016, 42, 1780–1793. [Google Scholar]
- Tucker, M.R.; Olivier, J.; Pagel, A.; Bleuler, H.; Bouri, M.; Lambercy, O.; Gassert, R. Control strategies for active lower extremity prosthetics and orthotics: A review. J. NeuroEngineering Rehabil. 2015, 12, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Fleming, A.; Stafford, N.; Huang, S.; Hu, X.; Ferris, D.P.; Huang, H.H. Myoelectric control of robotic lower limb prostheses: A review of electromyography interfaces, control paradigms, challenges and future directions. J. Neural Eng. 2021, 18, 041004. [Google Scholar] [CrossRef] [PubMed]
- Simao, M.; Mendes, N.; Gibaru, O.; Neto, P. A Review on Electromyography Decoding and Pattern Recognition for Human-Machine Interaction. IEEE Access 2019, 7, 39564–39582. [Google Scholar] [CrossRef]
- Spanias, J.A.; Simon, A.M.; Finucane, S.B.; Perreault, E.J.; Hargrove, L.J. Online adaptive neural control of a robotic lower limb prosthesis. J. Neural Eng. 2018, 15, 016015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Xiong, C.; Zhang, W.; Liu, H.; Lai, D.; Rong, Y.; Fu, C. Environmental Features Recognition for Lower Limb Prostheses Toward Predictive Walking. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Young, A.J.; Simon, A.M.; Fey, N.P.; Hargrove, L.J. Classifying the intent of novel users during human locomotion using powered lower limb prostheses. In Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 6–8 November 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 311–314. [Google Scholar]
- Ha, K.H.; Varol, H.A.; Goldfarb, M. Volitional Control of a Prosthetic Knee Using Surface Electromyography. IEEE Trans. Biomed. Eng. 2010, 58, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Varol, H.A.; Sup, F.; Goldfarb, M. Multiclass Real-Time Intent Recognition of a Powered Lower Limb Prosthesis. IEEE Trans. Biomed. Eng. 2009, 57, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhang, F.; Hargrove, L.J.; Dou, Z.; Rogers, D.R.; Englehart, K.B. Continuous Locomotion-Mode Identification for Prosthetic Legs Based on Neuromuscular-Mechanical Fusion. IEEE Trans. Biomed. Eng. 2011, 58, 2867–2875. [Google Scholar] [CrossRef] [PubMed]
- Young, A.J.; Simon, A.M.; Fey, N.P.; Hargrove, L.J. Intent Recognition in a Powered Lower Limb Prosthesis Using Time History Information. Ann. Biomed. Eng. 2013, 42, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Samuel, A.; Berniker, M.; Herr, H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. Off. J. Int. Neural Netw. Soc. 2008, 21, 654–666. [Google Scholar]
- Su, B.Y.; Wang, J.; Liu, S.Q.; Sheng, M.; Jiang, J.; Xiang, K. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1032–1042. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.; Molinaro, D.D.; Choi, G.; Camargo, J.; Young, A.J. Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications. IEEE Trans. Biomed. Eng. 2022, 69, 3234–3242. [Google Scholar] [CrossRef] [PubMed]
- Bhakta, K.; Camargo, J.; Donovan, L.; Herrin, K.; Young, A. Machine learning model comparisons of user independent & dependent intent recognition systems for powered prostheses. IEEE Robot. Automat. Lett. 2020, 5, 5393–5400. [Google Scholar]
- Lawson, B.E.; Mitchell, J.; Truex, D.; Shultz, A.; Ledoux, E.; Goldfarb, M. A robotic leg prosthesis: Design, control, and implementation. IEEE Robot. Autom. Mag. 2014, 21, 70–81. [Google Scholar] [CrossRef]
- Quintero, D.; Lambert, D.J.; Villarreal, D.J.; Gregg, R.D. Real-time continuous gait phase and speed estimation from a single sensor. In Proceedings of the 2017 IEEE Conference on Control Technology and Applications (CCTA), Kohala Coast, HI, USA, 27–30 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 847–852. [Google Scholar]
Symbol | Quantity |
---|---|
Total number of modes except for ST () | |
Thigh IMU angular velocity in the sagittal plane | |
Locomotion mode. | |
The sampling period and | |
The length of the time window. |
Testing Accuracy | Locomotion Modes | ||||||
---|---|---|---|---|---|---|---|
LW | SA | SD | RA | RD | Total | ||
Subjects M = Man W = Woman | M1 | 100.0 | 99.89 | 99.08 | 99.10 | 98.71 | 99.36 |
M2 | 100.0 | 99.67 | 99.90 | 97.55 | 97.59 | 98.94 | |
M3 | 100.0 | 99.71 | 99.11 | 98.88 | 98.65 | 99.27 | |
M4 | 100.0 | 99.15 | 99.19 | 97.73 | 97.32 | 98.68 | |
M5 | 99.99 | 99.89 | 99.39 | 97.36 | 96.90 | 98.71 | |
M6 | 100.0 | 100.0 | 99.59 | 99.33 | 99.58 | 99.70 | |
W1 | 100.0 | 98.69 | 99.53 | 100.0 | 99.63 | 99.57 | |
W2 | 99.94 | 98.48 | 98.85 | 99.16 | 98.75 | 99.04 |
Confusion Matrix | Predicted Class | ||||||
---|---|---|---|---|---|---|---|
LW | SA | SD | RA | RD | None | ||
Actual Class | LW | 99.99 | 0.01 | ||||
SA | 99.44 | 0.56 | |||||
SD | 0.67 | 99.33 | |||||
RA | 0.05 | 98.64 | 1.30 | 0.01 | |||
RD | 1.61 | 98.38 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; An, H.; Ma, H.; Wei, Q. Novel Feature Extraction and Locomotion Mode Classification Using Intelligent Lower-Limb Prosthesis. Machines 2023, 11, 235. https://doi.org/10.3390/machines11020235
Liu Y, An H, Ma H, Wei Q. Novel Feature Extraction and Locomotion Mode Classification Using Intelligent Lower-Limb Prosthesis. Machines. 2023; 11(2):235. https://doi.org/10.3390/machines11020235
Chicago/Turabian StyleLiu, Yi, Honglei An, Hongxu Ma, and Qing Wei. 2023. "Novel Feature Extraction and Locomotion Mode Classification Using Intelligent Lower-Limb Prosthesis" Machines 11, no. 2: 235. https://doi.org/10.3390/machines11020235
APA StyleLiu, Y., An, H., Ma, H., & Wei, Q. (2023). Novel Feature Extraction and Locomotion Mode Classification Using Intelligent Lower-Limb Prosthesis. Machines, 11(2), 235. https://doi.org/10.3390/machines11020235