A Method of Improving the Length Measurement Accuracy of Metal Parts Using Polarization Vision
Abstract
:1. Introduction
2. Hardware Platform Design
2.1. Hardware Device Selection
2.2. Polarization Degree Image Acquisition
2.3. Selection of Lighting Angle
3. Algorithm Design
3.1. Coordinate System Conversion Module
3.2. Dimensional Measurement Module
3.3. Judgment Module
4. Experimental Analysis
- (1)
- The result obtained by the electronic micrometer is considered to be the true length of the object. The accuracy of the micrometer is 0.01 mm, and the reading of the micrometer can be estimated to be 0.001 mm, so the error of 0.001 mm level is inaccurate.
- (2)
- The error less than 0.01 mm in each visual measurement error obtained from the measurement standard of electronic micrometer is inaccurate, which only represents that the measurement accuracy of this method has reached the level of 0.01 mm.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiangxian, H.; Hujuan, Y.; Jianzhao, Q. Advances in Probes of Micro-Nano Coordinating Measuring Machine. China Mech. Eng. 2013, 24, 1264–1272. [Google Scholar]
- Yang, H.; Xu, X. Intelligent Crack Extraction Based on Terrestrial Laser Scanning Measurement. Meas. Control 2020, 53, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhang, L.; Yang, J.; Cao, C.; Wang, W.; Ran, Y.; Tan, Z.; Luo, M. A Review of Multi-Sensor Fusion SLAM Systems Based on 3D LIDAR. Remote Sens. 2022, 14, 2835. [Google Scholar] [CrossRef]
- Yu, J.; Cheng, X.; Lu, L.; Wu, B. A Machine Vision Method for Measurement of Machining Tool Wear. Meas. J. Int. Meas. Confed. 2021, 182, 109683. [Google Scholar] [CrossRef]
- Hueckel, M.H. An Operator Which Locates Edges in Digitized Pictures. J. ACM 1971, 18, 113–125. [Google Scholar] [CrossRef]
- Takesa, K.; Sato, H. Measurement of Diameter Using Charge Coupled Device. Trans. Jpn. Soc. Mech. Eng. Ser. C 1985, 51, 969–978. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Chen, F.; Han, Y.; Zhang, Z. Sub-Pixel Dimensional Measurement with Logistic Edge Model. Optik 2014, 125, 2076–2080. [Google Scholar] [CrossRef]
- Carreras, I.A.; Turaga, S.C.; Berger, D.R.; San, D.C.; Giusti, A.; Gambardella, L.M.; Schmidhuber, J.; Laptev, D.; Dwivedi, S.; Buhmann, J.M.; et al. Crowdsourcing the Creation of Image Segmentation Algorithms for Connectomics. Front. Neuroanat. 2015, 9, 142. [Google Scholar] [CrossRef]
- Schoneberg, J.; Raghupathi, G.; Betzig, E.; Drubin, D. 3D Deep Convolutional Neural Networks in Lattice Light-Sheet Data Puncta Segmentation. In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine—BIBM, San Diego, CA, USA, 18–21 November 2019. [Google Scholar]
- Pan, Z.; Xu, J.; Guo, Y.; Hu, Y.; Wang, G. Deep Learning Segmentation and Classification for Urban Village Using a Worldview Satellite Image Based on U-Net. Remote Sens. 2020, 12, 1574. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, N.; Das, I.; Maulik, U. Understanding Deep Learning Techniques for Image Segmentation. ACM Comput. Surv. 2019, 52, 73. [Google Scholar] [CrossRef] [Green Version]
- Gite, S.; Mishra, A.; Kotecha, K. Enhanced Lung Image Segmentation Using Deep Learning. Neural Comput. Appl. 2022. [Google Scholar] [CrossRef] [PubMed]
- Li, B. Research on Geometric Dimension Measurement System of Shaft Parts Based on Machine Vision. EURASIP J. Image Video Process. 2018, 2018, 101. [Google Scholar] [CrossRef]
- Liu, Z.D.; Liao, Q. Automatic Measurement of Oil Volume in Checkout of Oil Pumps Based on Machine Vision. J. Adv. Manuf. Syst. 2008, 7, 85–89. [Google Scholar] [CrossRef]
- Fang, Z.; Xiong, H.; Xiao, S.; Li, G. Regular Workpiece Measurement System with Multiple Plane Dimensions Based on Monocular Vision. Mach. Des. Manuf. 2020, 249, 241–245. [Google Scholar] [CrossRef]
- Jia, G.; Song, L.; Cao, B.; Xu, Y. Research on Dimension Detection of Micro Hole Parts Based on Machine Vision. Tool Eng. 2021, 55, 105–109. [Google Scholar]
- Chen, Y.; Zhu, Z.; Liang, Z.; Iannucci, L.E.; Lake, S.P.; Gruev, V. Analysis of Signal-to-Noise Ratio of Angle of Polarization and Degree of Polarization. OSA Contin. 2021, 4, 1461–1472. [Google Scholar] [CrossRef]
- Miyazaki, D.; Kagesawa, M.; Ikeuchi, K. Transparent Surface Modeling from a Pair of Polarization Images. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, L.B. Spectral and polarization stereo methods using a single light source. In Proceedings of the International Conference on Computer Vision, London, UK, 8–11 June 1987. [Google Scholar]
- Lixiang, M.; Fanming, L.; Jiyong, N.; Lei, D. Polarization Model Based on Complex Refractive Index and Its Applications. Laser Infrared 2013, 43, 1138–1141. [Google Scholar]
- Parker, W.J.; Abbott, G.L. Theoretical and experimental studies of the total emittance of metals. In Proceedings of the Symposium on Thermal Radiation of Solids, San Francisco, CA, USA, 4–6 March 1964; NASA: Washington, DC, USA, 1965; pp. 11–28. [Google Scholar]
- Miyazaki, D.; Kagesawa, M.; Ikeuchi, K. Determining Shapes of Transparent Objects from Two Polarization Images. In Proceedings of the IAPR Workshop on Machine Vision Application, Nara, Japan, 11–13 December 2002. [Google Scholar]
- Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
Fang, 2020 [15] | Jia, 2021 [16] | Ping Chen, 2014 [7] | Method Proposed | |
---|---|---|---|---|
Image category | 5472 × 3648/Gray image | 5472 × 3648/Gray image | 5472 × 3648/Gray image | 2048 × 2448/Polarization image |
Maximum measurement error /μm | 168.26 | 529.91 | 37.23 | 7.06 |
Average measurement error /μm | 50.82 | 56.96 | 23.08 | 3.53 |
Maximum repeated measurement error /μm | 52.32 | 255.65 | 31 | 6.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Z.; Ji, Y.; Fan, W.; Kong, W.; Tao, X.; Xu, X.; Luo, M. A Method of Improving the Length Measurement Accuracy of Metal Parts Using Polarization Vision. Machines 2023, 11, 145. https://doi.org/10.3390/machines11020145
Tan Z, Ji Y, Fan W, Kong W, Tao X, Xu X, Luo M. A Method of Improving the Length Measurement Accuracy of Metal Parts Using Polarization Vision. Machines. 2023; 11(2):145. https://doi.org/10.3390/machines11020145
Chicago/Turabian StyleTan, Zhiying, Yan Ji, Wenbo Fan, Weifeng Kong, Xu Tao, Xiaobin Xu, and Minzhou Luo. 2023. "A Method of Improving the Length Measurement Accuracy of Metal Parts Using Polarization Vision" Machines 11, no. 2: 145. https://doi.org/10.3390/machines11020145
APA StyleTan, Z., Ji, Y., Fan, W., Kong, W., Tao, X., Xu, X., & Luo, M. (2023). A Method of Improving the Length Measurement Accuracy of Metal Parts Using Polarization Vision. Machines, 11(2), 145. https://doi.org/10.3390/machines11020145