Fault Location in Distribution Network by Solving the Optimization Problem Based on Power System Status Estimation Using the PMU
Abstract
:1. Introduction
1.1. State of the Art
1.2. Problematic and Proposed Solution
1.3. Methodology
2. PSSE-Based Network Visibility Using PMU
2.1. WLS Method to Solve PSSE Problem
2.2. Using the PMU in the PSSE Problem before the Fault
2.3. Utilization of Pre-Fault PSSE Information for Fault Location
3. Faulty Section Estimation and Fault Location in the Distribution Network Based on Optimization Problem Solving
3.1. Fault Location in the Distribution Network for Different Types of Faults
3.1.1. Short-Circuit Faults
3.1.2. Series Faults
4. Simulation Results
Sensitivity Analysis of the Proposed Method
- In reference [51], there are weaknesses in the defined objective function, which makes the proposed method not applicable to all types of faults in the distribution network.
- Since in reference [51], the objective function was based on the calculation of voltage changes of all nodes with the impedance matrix method, it is not possible to use it for series faults. In the new article, a new objective function based on current and voltage at the beginning and end of the line is defined so that in addition to reducing the calculations and improving the accuracy of the method, it can be implemented for all types of series and short circuit faults.
- The equations defined for the objective function of reference [51] are more complicated and their implementation will be difficult for large networks. In the new article the equations are based on the feature of the traveling wave model and the relationship between the voltage and current at the beginning and end of the line is defined to simplify calculations. So there is an obvious difference between the equations in the two papers. In addition, the line model considered in the new article has been modified to improve the accuracy of the method.
- In the new article, it is possible to identify several faults simultaneously, but in reference [51], due to the type of the objective function, this is not possible, and the algorithm suffers in this case.
- In the new article, a sensitivity analysis was performed on the proposed method for the types of faults, fault resistance, fault angle, loading states, PMU measurement error, change in the number of PMUs, and algorithms, which did not exist in reference [51].
- Finally, in the new article, there was a maximum time of 23.87 s and an average error of 0.74%, and a maximum error of 1.21%, which was far better than the previous article.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PMU | Phasor Measurement Unit |
GPS | Global Positioning System |
GA | Genetic Algorithm |
WLS | Weighted Least Square |
KVL | Kirchhoff’s Voltage Law |
LLS | Linear Least Square |
MILP | Mixed Integer Linear Programming |
PSO | Particle Swarm Optimization |
ACO | Ant Colony Optimization |
PSSE | Power System Status Estimation |
DG | Distributed Generation |
PF | Power Flow |
DFT | Discrete Fourier Transform |
F | Fault |
EE | Error estimation |
AFL | Automatic Fault Location |
DE | Differential Evolution |
WOA | Whale Optimization Algorithm |
List of symbols | |
Z | Vector of the measured variables |
h | Vector of the nonlinear |
σi2 | Variance |
f(Z) | Probability density function |
H(x) | Jacobin matrix |
k | Iteration index |
X | Sine quantity |
θ | The sampling angle |
Iij | Current between node i and j |
Dij | Imaginary part of the current Iij |
Rij | Line resistance between node i and j |
B | Susceptance |
ΔV | Line voltage drop |
x | Location of fault |
γ | Diffusion coefficient |
Y | Shunt admittance |
F | Fault point |
VF0,+,− | Zero, positive and negative sequence fault voltage |
x | Vector of the status variables |
e | Vector of the measurement error |
R | Covariance matrix |
J(Z) | Quadratic expression function |
g(x) | Nonlinear function |
G(x) | Gain matrix |
N | The number of samples |
τ | The sampling interval |
Cij | Real part of the current Iij |
Vi | Voltage of node i |
Lij | Line inductance between node i and j |
g | Conductance |
Vf,If | Fault voltage and current |
ZL | Line impedance L |
Zc | Characteristic impedances |
L | Line length |
Vi→j | Voltage of node i is seen from node j |
IF0,+,− | Zero, positive and negative sequence fault current |
References
- Apostolopoulos, C.A.; Arsoniadis, C.G.; Georgilakis, P.S.; Nikolaidis, V.C. Evaluating a Fault Location Algorithm for Active Distribution Systems Utilizing Two-Point Synchronized or Unsynchronized Measurements. In Proceedings of the 2021 International Conference on Smart Energy Systems and Technologies (SEST), Vaasa, Finland, 6–8 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Okumus, H.; Nuroglu, F.M. A random forest-based approach for fault location detection in distribution systems. Electr. Eng. 2021, 103, 257–264. [Google Scholar] [CrossRef]
- Lin, C.; Gao, W.; Guo, M.-F. Discrete wavelet transform-based triggering method for single-phase earth fault in power distribution systems. IEEE Trans. Power Deliv. 2019, 34, 2058–2068. [Google Scholar] [CrossRef]
- Li, S.; Wang, H.; Song, L.; Wang, P.; Cui, L.; Lin, T. An adaptive data fusion strategy for fault diagnosis based on the convolutional neural network. Measurement 2020, 165, 108122. [Google Scholar] [CrossRef]
- Stolbova, I.; Backhaus, S.; Chertkov, M. Fault-induced delayed voltage recovery in a long inhomogeneous power-distribution feeder. Phys. Rev. E 2015, 91, 022812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renew. Sustain. Energy Rev. 2018, 91, 1205–1230. [Google Scholar] [CrossRef]
- Pandakov, K.; Høidalen, H.K.; Marvik, J.I. Misoperation analysis of steady-state and transient methods on earth fault locating in compensated distribution networks. Sustain. Energy Grids Netw. 2018, 15, 34–42. [Google Scholar] [CrossRef]
- Dashtdar, M.; Dashtdar, M. Fault location in the distribution network based on scattered measurement in the network. Energy Syst. 2022, 13, 539–562. [Google Scholar] [CrossRef]
- Mirshekali, H.; Dashti, R.; Keshavarz, A.; Torabi, A.J.; Shaker, H.R. A novel fault location methodology for smart distribution networks. IEEE Trans. Smart Grid 2020, 12, 1277–1288. [Google Scholar] [CrossRef]
- Deng, F.; Zu, Y.; Mao, Y.; Zeng, X.; Li, Z.; Tang, X.; Wang, Y. A method for distribution network line selection and fault location based on a hierarchical fault monitoring and control system. Int. J. Electr. Power Energy Syst. 2020, 123, 106061. [Google Scholar] [CrossRef]
- Fang, J.; Wang, H.; Yang, F.; Wang, Y.; Yin, K.; He, J.; Lin, X. A Data-Driven Fault Location Method in Distribution Network Based on PMU Data. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 325–334. [Google Scholar] [CrossRef]
- Xie, L.; Luo, L.F.; Li, Y.; Zhang, Y.; Cao, Y. A traveling wave-based fault location method employing VMD-TEO for distribution network. IEEE Trans. Power Deliv. 2019, 35, 1987–1998. [Google Scholar] [CrossRef]
- Liang, R.; Fu, G.; Zhu, X.; Xue, X. Fault location based on single terminal travelling wave analysis in radial distribution network. Int. J. Electr. Power Energy Syst. 2015, 66, 160–165. [Google Scholar] [CrossRef]
- Shi, S.; Zhu, B.; Lei, A.; Dong, X. Fault location for radial distribution network via topology and reclosure-generating traveling waves. IEEE Trans. Smart Grid 2019, 10, 6404–6413. [Google Scholar] [CrossRef]
- Zhao, J.; Hou, H.; Gao, Y.; Huang, Y.; Gao, S.; Lou, J. Single-phase ground fault location method for distribution network based on traveling wave time-frequency characteristics. Electr. Power Syst. Res. 2020, 186, 106401. [Google Scholar]
- Majidi, M.; Arabali, A.; Etezadi-Amoli, M. Fault location in distribution networks by compressive sensing. IEEE Trans. Power Deliv. 2014, 30, 1761–1769. [Google Scholar] [CrossRef]
- Perez, R.; Vásquez, C.; Viloria, A. An intelligent strategy for faults location in distribution networks with distributed generation. J. Intell. Fuzzy Syst. 2019, 36, 1627–1637. [Google Scholar] [CrossRef] [Green Version]
- Keshavarz, A.; Dashti, R.; Deljoo, M.; Shaker, H.R. Fault location in distribution networks based on SVM and impedance-based method using online databank generation. Neural Comput. Appl. 2022, 34, 2375–2391. [Google Scholar] [CrossRef]
- Dzafic, I.; Jabr, R.A.; Henselmeyer, S.; Donlagic, T. Fault location in distribution networks through graph marking. IEEE Trans. Smart Grid 2016, 9, 1345–1353. [Google Scholar] [CrossRef]
- Azeroual, M.; Boujoudar, Y.; Bhagat, K.; El Iysaouy, L.; Aljarbouh, A.; Knyazkov, A.; Fayaz, M.; Qureshi, M.S.; Rabbi, F.; EL Markhi, H. Fault location and detection techniques in power distribution systems with distributed generation: Kenitra City (Morocco) as a case study. Electr. Power Syst. Res. 2022, 209, 108026. [Google Scholar] [CrossRef]
- Dashtdar, M.; Esmaeilbeig, M.; Najafi, M.; Bushehri, M.E.N. Fault location in the transmission network using artificial neural network. Autom. Control Comput. Sci. 2020, 54, 39–51. [Google Scholar] [CrossRef]
- Dashtdar, M.; Dashti, R.; Shaker, H.R. Distribution network fault section identification and fault location using artificial neural network. In Proceedings of the 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE), Istanbul, Turkey, 3–5 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 273–278. [Google Scholar]
- Aslan, Y.; Yağan, Y.E. Artificial neural-network-based fault location for power distribution lines using the frequency spectra of fault data. Electr. Eng. 2017, 99, 301–311. [Google Scholar] [CrossRef]
- Adewole, A.C.; Tzoneva, R.; Behardien, S. Distribution network fault section identification and fault location using wavelet entropy and neural networks. Appl. Soft Comput. 2016, 46, 296–306. [Google Scholar] [CrossRef]
- Gholami, M.; Abbaspour, A.; Moeini-Aghtaie, M.; Fotuhi-Firuzabad, M.; Lehtonen, M. Detecting the location of short-circuit faults in active distribution network using PMU-based state estimation. IEEE Trans. Smart Grid 2019, 11, 1396–1406. [Google Scholar] [CrossRef]
- Li, L.; Gao, H.; Cong, W.; Yuan, T. Location method of single line-to-ground faults in low-resistance grounded distribution networks based on ratio of zero-sequence admittance. Int. J. Electr. Power Energy Syst. 2023, 146, 108777. [Google Scholar] [CrossRef]
- Dashtdar, M.; Sarada, K.; Hosseinimoghadam, S.M.S.; Kalyan, C.H.N.S.; Venkateswarlu, A.N.; Goud, B.S.; Reddy, C.H.R.; Belkhier, Y.; Bajaj, M.; Reddy, B.N. Faulted Section Identification and Fault Location in Power Network Based on Histogram Analysis of Three-phase Current and Voltage Modulated. J. Electr. Eng. Technol. 2022, 17, 2631–2647. [Google Scholar] [CrossRef]
- Sheta, A.N.; Abdulsalam, G.M.; Eladl, A.A. Online tracking of fault location in distribution systems based on PMUs data and iterative support detection. Int. J. Electr. Power Energy Syst. 2021, 128, 106793. [Google Scholar] [CrossRef]
- Mirshekali, H.; Dashti, R.; Keshavarz, A.; Shaker, H.R. Machine Learning-Based Fault Location for Smart Distribution Networks Equipped with Micro-PMU. Sensors 2022, 22, 945. [Google Scholar] [CrossRef] [PubMed]
- Khaleghi, A.; Sadegh, M.O.; Ahsaee, M.G. Permanent Fault Location in Distribution System Using Phasor Measurement Units (PMU) in Phase Domain. Int. J. Electr. Comput. Eng. 2018, 8, 2709–2720. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Khodayar, M.E. Graph-based faulted line identification using micro-PMU data in distribution systems. IEEE Trans. Smart Grid 2020, 11, 3982–3992. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Jiao, Z. Accurate fault location method of distribution network with limited number of PMUs. In Proceedings of the 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, 17–19 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1503–1507. [Google Scholar]
- Zanni, L.; Derviškadić, A.; Pignati, M.; Xu, C.; Romano, P.; Cherkaoui, R.; Abur, A.; Paolone, M. PMU-based linear state estimation of lausanne subtransmission network: Experimental validation. Electr. Power Syst. Res. 2020, 189, 106649. [Google Scholar] [CrossRef]
- Li, Q.; Xu, Y.; Ren, C.; Zhao, J. A hybrid data-driven method for online power system dynamic security assessment with incomplete PMU measurements. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Mishra, B.; Thakur, S.S.; Mallick, S.; Panigrahi, C.K. Optimal Placement of PMU for Fast Robust Power System Dynamic State Estimation using UKF–GBDT Technique. J. Circuits Syst. Comput. 2022, 31, 2250068. [Google Scholar] [CrossRef]
- Zhao, J.; Gómez-Expósito, A.; Netto, M.; Mili, L.; Abur, A.; Terzija, V.; Kamwa, I.; Pal, B.; Singh, A.K.; Qi, J.; et al. Power system dynamic state estimation: Motivations, definitions, methodologies, and future work. IEEE Trans. Power Syst. 2019, 34, 3188–3198. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Ren, X.; Zhang, Y.; Zhang, F. Augmented State Estimation Method for Fault Location Based on On-line Parameter Identification of PMU Measurement Data. In Proceedings of the 2018 IEEE 2nd International Electrical and Energy Conference (CIEEC), Beijing, China, 4–6 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 105–109. [Google Scholar]
- Mirshekali, H.; Dashti, R.; Handrup, K.; Shaker, H.R. Real Fault Location in a Distribution Network Using Smart Feeder Meter Data. Energies 2021, 14, 3242. [Google Scholar] [CrossRef]
- Di Manno, M.; Varilone, P.; Verde, P.; De Santis, M.; Di Perna, C.; Salemme, M. User friendly smart distributed measurement system for monitoring and assessing the electrical power quality. In Proceedings of the 2015 AEIT International Annual Conference (AEIT), Naples, Italy, 14–16 October 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Brahma, S.M. Fault location in power distribution system with penetration of distributed generation. IEEE Trans. Power Deliv. 2011, 26, 1545–1553. [Google Scholar] [CrossRef]
- De Santis, M.; Noce, C.; Varilone, P.; Verde, P. Analysis of the origin of measured voltage sags in interconnected networks. Electr. Power Syst. Res. 2018, 154, 391–400. [Google Scholar] [CrossRef]
- Kazemi, A.; Mohamed, A.; Shareef, H.; Zayandehroodi, H. A review of power quality monitor placement methods in transmission and distribution systems. Przegląd Elektrotechniczny 2013, 3, 185–188. [Google Scholar]
- Kazemi, A.; Mohamed, A.; Shareef, H.; Zayandehroodi, H. Review of voltage sag source identification methods for power quality diagnosis. Przegląd Elektrotechniczny 2013, 89, 143–146. [Google Scholar]
- Ahmed, A.S.; Attia, M.A.; Hamed, N.M.; Abdelaziz, A.Y. Modern optimization algorithms for fault location estimation in power systems. Eng. Sci. Technol. Int. J. 2017, 20, 1475–1485. [Google Scholar]
- Pereira RA, F.; Da Silva LG, W.; Mantovani JR, S. PMUs optimized allocation using a tabu search algorithm for fault location in electric power distribution system. In Proceedings of the 2004 IEEE/PES Transmision and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956), Sao Paulo, Brazil, 8–11 November 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 143–148. [Google Scholar]
- Li, Y.; Ye, H.; Chen, Z. Binary particle swarm optimization algorithm with gene translocation for distribution network fault location. In Proceedings of the 2012 Spring Congress on Engineering and Technology, Xi’an, China, 27–30 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–4. [Google Scholar]
- Hao, Y.; Wang, Q.; Li, Y.; Song, W. An intelligent algorithm for fault location on VSC-HVDC system. Int. J. Electr. Power Energy Syst. 2018, 94, 116–123. [Google Scholar] [CrossRef]
- Dashtdar, M.; Hosseinimoghadam, S.M.S.; Dashtdar, M. Fault location in the distribution network based on power system status estimation with smart meters data. Int. J. Emerg. Electr. Power Syst. 2021, 22, 129–147. [Google Scholar] [CrossRef]
- Madani, R.; Ashraphijuo, M.; Lavaei, J.; Ross, B. Power system state estimation with a limited number of measurements. In 2016 IEEE 55th Conference on Decision and Control (CDC); IEEE: Las Vegas, NV, USA, 2016. [Google Scholar]
- Bhela, S.; Kekatos, V.; Veeramachaneni, S. Enhancing observability in distribution grids using smart meter data. IEEE Trans. Smart Grid 2017, 9, 5953–5961. [Google Scholar] [CrossRef] [Green Version]
- Dashtdar, M.; Bajaj, M.; Hosseinimoghadam, S.M.S.; Mérshêkáér, H. Fault location in distribution network by solving the optimization problem using genetic algorithm based on the calculating voltage changes. Soft Comput. 2022, 26, 8757–8783. [Google Scholar] [CrossRef]
- Sun, H.; Yi, H.; Zhuo, F.; Du, X.; Yang, G. Precise fault location in distribution networks based on optimal monitor allocation. IEEE Trans. Power Deliv. 2019, 35, 1788–1799. [Google Scholar] [CrossRef]
- Lee, J. Automatic fault location on distribution networks using synchronized voltage phasor measurement units. In ASME Power Conference; American Society of Mechanical Engineers: New York, NY, USA, 2014; Volume 46094, p. V002T14A008. [Google Scholar]
- Alqahtani, M.; Miao, Z.; Fan, L. Mixed integer programming formulation for fault identification based on MicroPMUs. Int. Trans. Electr. Energy Syst. 2021, 31, e12949. [Google Scholar] [CrossRef]
- Zhou, Q.; Zheng, B.; Wang, C.; Zhao, J.; Wang, Y. Fault location for distribution networks with distributed generation sources using a hybrid DE/PSO algorithm. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–5. [Google Scholar]
- Nashawati, E.; Garcia, R.; Rosenberger, T. Using synchrophasor for fault location identification. In Proceedings of the 2012 65th Annual Conference for Protective Relay Engineers, College Station, TX, USA, 2–5 April 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 14–21. [Google Scholar]
- Ahmed, A.S.; Attia, M.A.; Hamed, N.M.; Abdelaziz, A.Y. Comparison between genetic algorithm and whale optimization algorithm in fault location estimation in power systems. In Proceedings of the 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 19–21 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 631–637. [Google Scholar]
- Chen, L.; Xiao, C.; Li, X.; Wang, Z.; Huo, S. A seismic fault recognition method based on ant colony optimization. J. Appl. Geophys. 2018, 152, 1–8. [Google Scholar] [CrossRef]
Actual Values | Estimated Values | LLS [51] | AFL [52] | MILP [53] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Section | Fault Type | L (ft.) | Rf (Ohm) | Fault Angle (Deg) | X (ft.) | Se | Xe (ft.) | Processing Time (s) | EE % | EE % | EE % | EE % |
L 19–20 | A-g | 325 | 50 | 0 | 302 | L 19–20 | 300.79 | 22.74 | 0.37 | 3.65 | 3.76 | 1.65 |
L 76–86 | Two open A-B | 700 | - | 45 | 246 | L 76–86 | 240.54 | 23.73 | 0.78 | - | - | - |
L 7–8 | C-A-g | 300 | 5 | 90 | 150 | L 7–8 | 148.71 | 21.82 | 0.43 | 2.65 | 2.41 | 1.34 |
L 110–111 | C-g | 575 | 10 | 120 | 505 | L110–111 | 502.64 | 21.34 | 0.41 | 1.23 | 3.85 | 0.98 |
L 50–51 | A-B-C-g | 250 | 40 | 30 | 10 | L 50–51 | 8.375 | 21.17 | 0.65 | 3.71 | 1.89 | 1.75 |
L 77–78 | C-A-g | 100 | 30 | 0 | 60 | L 77–78 | 59.65 | 21.24 | 0.35 | 3.22 | 2.51 | 0.87 |
L 30–250 | One open A | 200 | - | 10 | 25 | L 30–250 | 23.30 | 20.49 | 0.85 | - | - | - |
L 35–36 | A-B | 650 | - | 60 | 600 | L 35–36 | 596.55 | 20.67 | 0.53 | 1.26 | 3.72 | 1.25 |
L 28–29 | B-C-g | 300 | 100 | 135 | 10 | L 28–29 | 9.19 | 20.44 | 0.27 | 1.12 | 1.27 | 1.34 |
L102–103 | B-g | 325 | 70 | 35 | 25 | L102–103 | 22.205 | 18.86 | 0.86 | 1.51 | 2.46 | 0.71 |
L101–105 | A-B-C-g | 275 | 60 | 40 | 45 | L101–105 | 44.23 | 22.65 | 0.28 | 2.13 | 1.35 | 0.89 |
L 45–46 | A-g | 300 | 20 | 70 | 100 | L 45–46 | 98.83 | 23.18 | 0.39 | 1.11 | 3.54 | 0.76 |
L 95–96 | C-g | 200 | 6 | 100 | 190 | L 95–96 | 189.14 | 21.35 | 0.43 | 1.19 | 1.14 | 1.01 |
L 76–86 | A-B-C-g | 700 | 9 | 0 | 650 | L 76–86 | 643.77 | 21.79 | 0.89 | 2.89 | 2.53 | 1.71 |
L 50–51 | One open C | 250 | - | 20 | 150 | L 50–51 | 149.17 | 21.59 | 0.33 | - | - | - |
L 55–56 | B-C-g | 200 | 100 | 90 | 20 | L 55–56 | 18.14 | 21.88 | 0.93 | 1.23 | 1.34 | 0.68 |
L 15–16 | C-g | 375 | 25 | 80 | 5 | L 15–16 | 3.075 | 20.12 | 0.51 | 1.16 | 1.97 | 0.64 |
L 30–250 | A-B-C-g | 200 | 45 | 50 | 12 | L 30–250 | 10.04 | 20.60 | 0.98 | 1.27 | 1.25 | 0.61 |
L101–105 | Two open B-C | 275 | - | 10 | 260 | L101–105 | 259.20 | 21.76 | 0.29 | - | - | - |
L 64–65 | A-B-C-g | 425 | 80 | 45 | 320 | L 64–65 | 317.11 | 19.46 | 1.21 | 1.14 | 2.23 | 0.73 |
L 74–75 | A-g | 400 | 65 | 135 | 11 | L 74–75 | 6.24 | 22.31 | 1.19 | 1.61 | 1.87 | 0.59 |
L 68–69 | C-g | 275 | 24 | 120 | 90 | L 68–69 | 86.672 | 23.87 | 0.68 | 3.62 | 2.65 | 1.63 |
L 64–65 | One open A | 425 | - | 25 | 390 | L 64–65 | 387.66 | 21.95 | 0.55 | - | - | - |
L 81–82 | B-C-g | 250 | 15 | 35 | 190 | L 81–82 | 189.22 | 22.44 | 0.31 | 1.75 | 1.77 | 0.53 |
Parameter | Fault Resistance | Fault Angle | Fault Type | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
20 Ω | 40 Ω | 60 Ω | 80 Ω | 100 Ω | 0° | 45° | 90° | 120° | 1-Phase | 2-Phase | 3-Phase | |
EE % | 0.42 | 0.65 | 0.68 | 0.82 | 0.94 | 0.75 | 0.55 | 0.72 | 0.75 | 0.65 | 0.74 | 0.81 |
Parameter | Loading States | ||
---|---|---|---|
10% | 50% | ||
EE % | 1-Phase fault | 0.61 | 0.63 |
2-Phase fault | 0.73 | 0.72 | |
3-Phase fault | 0.79 | 0.83 |
Parameter | Without Error | PMU Measurement Error | |
---|---|---|---|
1% | 3% | ||
EE % | 0.74 | 0.96 | 1.24 |
Parameter | Without Changing the PMU (Number of Seven PMU) | Change the Number of PMUs | |
---|---|---|---|
Number of Four PMU | Number of Fourteen PMUs | ||
Mean value of EE % | 0.74 | 1.15 | 0.35 |
Maximum value of EE % | 1.21 | 1.64 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dashtdar, M.; Hussain, A.; Al Garni, H.Z.; Mas’ud, A.A.; Haider, W.; AboRas, K.M.; Kotb, H. Fault Location in Distribution Network by Solving the Optimization Problem Based on Power System Status Estimation Using the PMU. Machines 2023, 11, 109. https://doi.org/10.3390/machines11010109
Dashtdar M, Hussain A, Al Garni HZ, Mas’ud AA, Haider W, AboRas KM, Kotb H. Fault Location in Distribution Network by Solving the Optimization Problem Based on Power System Status Estimation Using the PMU. Machines. 2023; 11(1):109. https://doi.org/10.3390/machines11010109
Chicago/Turabian StyleDashtdar, Masoud, Arif Hussain, Hassan Z. Al Garni, Abdullahi Abubakar Mas’ud, Waseem Haider, Kareem M. AboRas, and Hossam Kotb. 2023. "Fault Location in Distribution Network by Solving the Optimization Problem Based on Power System Status Estimation Using the PMU" Machines 11, no. 1: 109. https://doi.org/10.3390/machines11010109
APA StyleDashtdar, M., Hussain, A., Al Garni, H. Z., Mas’ud, A. A., Haider, W., AboRas, K. M., & Kotb, H. (2023). Fault Location in Distribution Network by Solving the Optimization Problem Based on Power System Status Estimation Using the PMU. Machines, 11(1), 109. https://doi.org/10.3390/machines11010109