Multi-Objective Optimization of a Small Horizontal-Axis Wind Turbine Blade for Generating the Maximum Startup Torque at Low Wind Speeds
Abstract
:1. Introduction
2. The Base Wind Turbine
3. Numerical Methodology
3.1. Calculating Design Goals
3.2. Multi-Objective Optimization
3.3. Configuring the Input Variables
4. Results and Discussion
4.1. Validity of the BEM Technique
4.2. Validity of the Optimization Technique
4.3. Performing the Optimization
4.4. The Power Generation Analysis
4.5. The Startup Behavior Analysis
5. Conclusions
- By increasing the c and θ values in r/R < 0.52 and also following the ideal c and θ profiles in r/R ≥ 0.52, with only a 1.5% reduction in the Cp, the Qs of the designed blade was augmented by 140% compared with the base blade. This increase in the Qs reduced the startup wind speed from 6 m/s in the base blade to 4 m/s in the designed blade. This makes the turbine appropriate to use in more regions;
- In blade design, to obtain the maximum Cp, the genetic algorithm and the Schmitz equations reached a similar c and θ profiles, which indicates the high accuracy and capability of the genetic algorithm in optimizing wind turbine blades;
- The blade geometry designed with ideal equations produces the lowest Qs, so these types of blades are not suitable for application in regions with low wind speed;
- The aerodynamic torque for power generation increases along the length of the blade from the hub to r/R = 0.89, and a good agreement can be seen between the CFD and BEM results up to this point, but after that, the aerodynamic torque decreases due to the formation of tip vortices. In this regard, the CFD method predicts a greater drop than Prandtl’s tip correction factor;
- Considering the Qs in the objective function is very useful because, firstly, it leads to c and θ distributions without discrepancies, and, secondly, it results in a significant increase in the Qs against a slight decrease in the output power. This compromise is very attractive for low-wind-speed areas;
- When the blade is stationary, the tip elements of the blade not only do not contribute to the Qs but also can produce a negative torque which is due to the negative θ in this region.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | The surface area of the airfoil (m2) |
Cl | Lift coefficient |
Cp | Power coefficient |
c | Blade chord (m) |
F | Prandtl tip loss factor |
f | Term in Prandtl tip loss factor |
J | Rotational inertia (kg·m2) |
N | Number of blades |
n | Weighting factor |
Q | Torque (kg·m2·s−2) |
Qr | Resistive torque (kg·m2·s−2) |
R | Blade tip radius (m) |
Re | Reynolds number |
r | Radial coordinate along blade (m) |
rh | Hub radius (m) |
S | The swept area of blades (m2) |
Ts | Startup time (s) |
t | Time (s) |
U | Wind velocity (m·s−1) |
y+ | Non-dimensional distance |
Greek Symbols | |
α | Angle of attack |
θ | Blade twist angle |
λ | Tip speed ratio |
λr | Local tip speed ratio |
ρ | Density (kg·m−3) |
ϕ | Blade inflow angle |
ω | Angular velocity (s−1) |
Subscripts | |
b | Blade |
s | Startup |
Abbreviations | |
BEM | Blade element momentum |
CFD | Computational fluid dynamic |
HAWT | Horizontal-axis wind turbine |
NACA | U.S. National Advisory Committee on Aeronautics |
SST | Shear stress transport |
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015.
- Evans, A.; Strezov, V.; Evans, T.J. Assessment of Sustainability Indicators for Renewable Energy Technologies. Renew. Sustain. Energy Rev. 2009, 13, 1082–1088. [Google Scholar] [CrossRef]
- Castellani, F.; Astolfi, D.; Becchetti, M.; Berno, F. Experimental and Numerical Analysis of the Dynamical Behavior of a Small Horizontal-Axis Wind Turbine under Unsteady Conditions: Part I. Machines 2018, 6, 52. [Google Scholar] [CrossRef]
- Mostafaeipour, A. Economic Evaluation of Small Wind Turbine Utilization in Kerman, Iran. Energy Convers. Manag. 2013, 73, 214–225. [Google Scholar] [CrossRef]
- Eltayesh, A.; Castellani, F.; Burlando, M.; Bassily Hanna, M.; Huzayyin, A.S.; El-Batsh, H.M.; Becchetti, M. Experimental and Numerical Investigation of the Effect of Blade Number on the Aerodynamic Performance of a Small-Scale Horizontal Axis Wind Turbine. Alex. Eng. J. 2021, 60, 3931–3944. [Google Scholar] [CrossRef]
- Bourhis, M.; Pereira, M.; Ravelet, F. Experimental Investigation of the Effect of Blade Solidity on Micro-Scale and Low Tip-Speed Ratio Wind Turbines. 2022. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4049421 (accessed on 7 September 2022).
- Wright, A.K.; Wood, D.H. The Starting and Low Wind Speed Behaviour of a Small Horizontal Axis Wind Turbine. J. Wind Eng. Ind. Aerodyn. 2004, 92, 1265–1279. [Google Scholar] [CrossRef]
- Berges, B. Development of Small Wind Turbines; Technical University of Denmark: Lyngby, Denmark, 2007. [Google Scholar]
- Hansen, M.O.L.; Aagaard Madsen, H. Review Paper on Wind Turbine Aerodynamics. J. Fluids Eng. Trans. ASME 2011, 133, 114001. [Google Scholar] [CrossRef]
- Wood, D. Small Wind Turbines: Analysis, Design, and Application. In Green Energy and Technology; Springer: London, UK, 2011; Volume 38, ISBN 9781849961745. [Google Scholar]
- Selig, M.S.; McGranahan, B.D. Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines. J. Sol. Energy Eng. 2004, 126, 986–1001. [Google Scholar] [CrossRef]
- Singh, R.K.; Ahmed, M.R.; Zullah, M.A.; Lee, Y.H. Design of a Low Reynolds Number Airfoil for Small Horizontal Axis Wind Turbines. Renew. Energy 2012, 42, 66–76. [Google Scholar] [CrossRef]
- Hassanzadeh, A.; Hassanabad, A.H.; Dadvand, A. Aerodynamic Shape Optimization and Analysis of Small Wind Turbine Blades Employing the Viterna Approach for Post-Stall Region. Alex. Eng. J. 2016, 55, 2035–2043. [Google Scholar] [CrossRef]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 111999392X. [Google Scholar]
- Yang, X.S.; Deb, S. Cuckoo Search via Lévy Flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar] [CrossRef]
- Garcia, F.J.M.; Pérez, J.A.M. Jumping Frogs Optimization: A New Swarm Method for Discrete Optimization. Doc. Trab. DEIOC 2008, 3, 1–10. [Google Scholar]
- Yang, X.-S.S. A New Metaheuristic Bat-Inspired Algorithm BT—Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Stud. Comput. Intell. 2010, 284, 65–74. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992; ISBN 0262581116. [Google Scholar]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans. Syst. Man. Cybern. Part B Cybern. 1996, 26, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, A.P. Fundamentals of Computational Swarm Intelligence; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 599. [Google Scholar]
- Soni, V.; Sharma, A.; Singh, V. A Critical Review on Nature Inspired Optimization Algorithms. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1099, 012055. [Google Scholar] [CrossRef]
- Pourrajabian, A. Effect of Blade Profile on the External/Internal Geometry of a Small Horizontal Axis Wind Turbine Solid/Hollow Blade. Sustain. Energy Technol. Assess. 2022, 51, 101918. [Google Scholar] [CrossRef]
- Jureczko, M.; Mrówka, M. Multiobjective Optimization of Composite Wind Turbine Blade. Materials 2022, 15, 4649. [Google Scholar] [CrossRef]
- Pourrajabian, A.; Dehghan, M.; Javed, A.; Wood, D. Choosing an Appropriate Timber for a Small Wind Turbine Blade: A Comparative Study. Renew. Sustain. Energy Rev. 2019, 100, 1–8. [Google Scholar] [CrossRef]
- Akbari, V.; Naghashzadegan, M.; Kouhikamali, R.; Afsharpanah, F.; Yaïci, W. Multi-Objective Optimization and Optimal Airfoil Blade Selection for a Small Horizontal-Axis Wind Turbine (HAWT) for Application in Regions with Various Wind Potential. Machines 2022, 10, 687. [Google Scholar] [CrossRef]
- Astolfi, D.; Castellani, F.; Natili, F. Wind Turbine Yaw Control Optimization and Its Impact on Performance. Machines 2019, 7, 41. [Google Scholar] [CrossRef]
- Dal Monte, A.; Castelli, M.R.; Benini, E. Multi-Objective Structural Optimization of a HAWT Composite Blade. Compos. Struct. 2013, 106, 362–373. [Google Scholar] [CrossRef]
- Clifton-Smith, M.J. Aerodynamic Noise Reduction for Small Wind Turbine Rotors. Wind Eng. 2010, 34, 403–420. [Google Scholar] [CrossRef]
- Abdelsalam, A.M.; El-Askary, W.A.; Kotb, M.A.; Sakr, I.M. Experimental Study on Small Scale Horizontal Axis Wind Turbine of Analytically-Optimized Blade with Linearized Chord Twist Angle Profile. Energy 2021, 216, 119304. [Google Scholar] [CrossRef]
- Rector, M.C.; Visser, K.D.; Humiston, C.J. Solidity, Blade Number, and Pitch Angle Effects on a One Kilowatt HAWT. In Proceedings of the Collection of Technical Papers—44th AIAA Aerospace Sciences Meeting, Reno, NV, USA, 9–12 January 2006; Volume 10, pp. 7281–7290. [Google Scholar]
- Wang, S.-H.; Chen, S.-H. Blade Number Effect for a Ducted Wind Turbine. J. Mech. Sci. Technol. 2008, 22, 1984–1992. [Google Scholar] [CrossRef]
- Astolfi, D.; Castellani, F.; Terzi, L. Wind Turbine Power Curve Upgrades. Energies 2018, 11, 1300. [Google Scholar] [CrossRef]
- Anderson, M.B.; Milborrow, D.J.; Ross, J.N. Performance and Wake Measurements on a 3 M Diameter Horizontal Axis Wind Turbine. Comparison of Theory, Wind Tunnel and Field Test Data. In Proceedings of the International Symposium on Wind Energy Systems, Stockholm, Sweden, 21–24 September 1982; Volume 2, pp. 113–135. [Google Scholar]
- Koca, K.; Genç, M.S.; Açıkel, H.H.; Çağdaş, M.; Bodur, T.M. Identification of Flow Phenomena over NACA 4412 Wind Turbine Airfoil at Low Reynolds Numbers and Role of Laminar Separation Bubble on Flow Evolution. Energy 2018, 144, 750–764. [Google Scholar] [CrossRef]
- Glauert, H. Airplane Propellers. In Aerodynamic Theory; Springer: Berlin/Heidelberg, Germany, 1935; pp. 169–360. [Google Scholar]
- Spera, D.A. Wind Turbine Technology; ASME Publishing: New York, NY, USA, 1994. [Google Scholar]
- Castellani, F.; Astolfi, D.; Natili, F.; Mari, F. The Yawing Behavior of Horizontal-Axis Wind Turbines: A Numerical and Experimental Analysis. Machines 2019, 7, 15. [Google Scholar] [CrossRef]
- Wood, D.H. A Blade Element Estimation of the Cut-in Wind Speed of a Small Turbine. Wind Eng. 2001, 25, 125–130. [Google Scholar] [CrossRef]
- Holland, J. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975; Volume 7, pp. 390–401. [Google Scholar]
- Goldberg, D.E. Genetic Algorithms; Pearson Education: Noida, India, 2013; ISBN 817758829X. [Google Scholar]
- Haupt, R.L.; Haupt, S.E. Practical Genetic Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 0471671754. [Google Scholar]
- Gasch, R.; Twele, J. Blade Geometry According to Betz and Schmitz. In Wind Power Plants; Springer: Berlin/Heidelberg, Germany, 2012; pp. 168–207. [Google Scholar]
- ANSYS Fluent Theory Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2015.
- Sessarego, M.; Wood, D. Multi-Dimensional Optimization of Small Wind Turbine Blades. Renew. Wind. Water Sol. 2015, 2, 9. [Google Scholar] [CrossRef] [Green Version]
Variable | Lower Limit | Upper Limit |
---|---|---|
(°) | −5 | 25 |
c/R | 0.01 | 0.2 |
Variable | Value |
---|---|
Population | 3000 |
Number of generations | 500 |
Selection rate | 0.1 |
Mutation rate | 0–0.1 |
Method | ||
---|---|---|
Base Blade | Designed Blade | |
Anderson et al. [33] | 0.454 | - |
BEM | 0.460 | 0.453 |
CFD | 0.453 | 0.451 |
Case | J (kg·m2) | Ts (s) | ||
---|---|---|---|---|
Us = 4 m/s | Us = 5 m/s | Us = 6 m/s | ||
Base blade | 0.798 | - | - | 10.63 |
Designed blade | 1.691 | 12.59 | 6.69 | 4.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbari, V.; Naghashzadegan, M.; Kouhikamali, R.; Afsharpanah, F.; Yaïci, W. Multi-Objective Optimization of a Small Horizontal-Axis Wind Turbine Blade for Generating the Maximum Startup Torque at Low Wind Speeds. Machines 2022, 10, 785. https://doi.org/10.3390/machines10090785
Akbari V, Naghashzadegan M, Kouhikamali R, Afsharpanah F, Yaïci W. Multi-Objective Optimization of a Small Horizontal-Axis Wind Turbine Blade for Generating the Maximum Startup Torque at Low Wind Speeds. Machines. 2022; 10(9):785. https://doi.org/10.3390/machines10090785
Chicago/Turabian StyleAkbari, Vahid, Mohammad Naghashzadegan, Ramin Kouhikamali, Farhad Afsharpanah, and Wahiba Yaïci. 2022. "Multi-Objective Optimization of a Small Horizontal-Axis Wind Turbine Blade for Generating the Maximum Startup Torque at Low Wind Speeds" Machines 10, no. 9: 785. https://doi.org/10.3390/machines10090785
APA StyleAkbari, V., Naghashzadegan, M., Kouhikamali, R., Afsharpanah, F., & Yaïci, W. (2022). Multi-Objective Optimization of a Small Horizontal-Axis Wind Turbine Blade for Generating the Maximum Startup Torque at Low Wind Speeds. Machines, 10(9), 785. https://doi.org/10.3390/machines10090785