Reverse Nonlinear Sparrow Search Algorithm Based on the Penalty Mechanism for Multi-Parameter Identification Model Method of an Electro-Hydraulic Servo System
Abstract
:1. Introduction
- An inverse nonlinear sparrow search algorithm based on a penalty mechanism is proposed.
- PRN-SSA introduces a reverse learning strategy in the initial stage, which increases the traversal and diversity of the initial search. In the sparrow search stage, nonlinear factors are introduced to achieve a balance between the global search and local development capabilities, as well as to improve the overall optimization efficiency of the algorithm. After discovering dangerous sparrow individuals, we carry out the movement method based on the punishment mechanism, and make full use of each sparrow individual.
- The optimization ability of the proposed algorithm is tested on unimodal, multimodal, and fixed-dimensional multimodal benchmark functions.
- The proposed algorithm is compared with six other heuristic algorithms in terms of numerical analysis and convergence curves to determine the performance of the best optimal value.
- A multi-parameter identification method for an electro-hydraulic servo system based on the PRN-SSA is proposed and compared with six other heuristic algorithms. It should be noted that the servo system identification problem can be solved effectively.
2. Basic System Model
2.1. The Composition of the Semi-Physical Simulation Test Bench
2.1.1. Servo Amplifier Model
2.1.2. The Transfer Function of Electro-Hydraulic Servo Valve
2.1.3. Basic Equations of Hydraulic Power Mechanism
2.2. Determination of Parameters to Be Identified
3. The Proposed Meta-Heuristic Approach
3.1. Sparrow Search Algorithm
3.2. Reverse Nonlinear Sparrow Search Algorithm Based on Penalty Mechanism
3.2.1. Opposition-Based Learning
3.2.2. Non-Linear Factors
Nonlinear Convergence Factor
Adaptive Weight Factor
The Golden Sine and Cosine Factor
3.2.3. Penalty Mechanism
3.3. Implementation Steps of PRN-SSA
3.4. Time Complexity Analysis of PRN-SSA
4. The Proposed Identification Strategy
4.1. The Error Evaluation Function
4.2. Identification Strategy
5. Benchmark Function Experiments
5.1. Comparison of Optimization Performance of Various Improvement Strategies
5.1.1. Performance Analysis of Opposition-Based Learning Strategy
5.1.2. Performance Analysis of Introducing Nonlinear Factors
5.1.3. Performance Analysis of Introducing Penalty Mechanism
5.2. Comparison Algorithms and Parameter Settings
5.3. Performance Comparison
5.3.1. Test Function Optimization Results
5.3.2. Analysis of Numerical Results
5.4. High-Dimensional Performance Comparison
5.4.1. Test Function Optimization Curve
5.4.2. Optimization Curve Analysis
6. Results and Discussion
6.1. System Parameters and Working Principle
6.2. Semi-Physical Simulation Platform Test
6.2.1. Comparative Experiment and Result Analysis
6.2.2. Optimization Curve and Result Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, W.; Liu, X.; Su, X. High-Precision Position Tracking Control of Electro-hydraulic Servo Systems Based on an Improved Structure and Desired Compensation. Int. J. Control Autom. Syst. 2021, 19, 3622–3630. [Google Scholar] [CrossRef]
- Yang, H.; Cong, D.; Yang, Z.; Han, J. Continuous Swept-Sine Vibration Realization Combining Adaptive Sliding Mode Control and Inverse Model Compensation for Electro-hydraulic Shake Table. J. Vib. Eng. Technol. 2022, 10, 1007–1019. [Google Scholar] [CrossRef]
- Shiralkar, A.; Kurode, S.; Gore, R.; Tamhane, B. Robust output feedback control of electro-hydraulic system. Int. J. Dyn. Control 2019, 7, 295–307. [Google Scholar] [CrossRef]
- Gao, B.; Shen, W.; Guan, H.; Zhang, W.; Zheng, L. Review and Comparison of Clearance Control Strategies. Machines 2022, 10, 492. [Google Scholar] [CrossRef]
- Xu, X.; Ding, S.; Jia, W.; Ma, G.; Jin, F. Research of assembling optimized classification algorithm by neural network based on Ordinary Least Squares (OLS). Neural Comput. Appl. 2013, 22, 187–193. [Google Scholar] [CrossRef]
- Popescu, T.D.; Aiordachioaie, D.; Culea-Florescu, A. Basic tools for vibration analysis with applications to predictive maintenance of rotating machines: An overview. Int. J. Adv. Manuf. Technol. 2021, 118, 2883–2899. [Google Scholar] [CrossRef]
- Calgan, H.; Demirtas, M. Design and implementation of fault tolerant fractional order controllers for the output power of self-excited induction generator. Electr. Eng. 2021, 103, 2373–2389. [Google Scholar] [CrossRef]
- Huang, M.X. Recent developments in topological string theory. Sci. China Phys. Mech. Astron. 2019, 62, 990001. [Google Scholar] [CrossRef] [Green Version]
- She, J.; Wu, L.; Zhang, C.K.; Liu, Z.T.; Xiong, Y. Identification of Moment of Inertia for PMSM Using Improved Modelreference Adaptive System. Int. J. Control Autom. Syst. 2022, 20, 13–23. [Google Scholar] [CrossRef]
- Liao, J.L.; Yin, F.; Luo, Z.H.; Chen, B.; Sheng, D.R.; Yu, Z.T. The parameter identification method of steam turbine nonlinear servo system based on artificial neural network. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 165. [Google Scholar] [CrossRef]
- Huang, P.; Lu, Z.; Liu, Z. State estimation and parameter identification method for dual-rate system based on improved Kalman prediction. Int. J. Control Autom. Syst. 2016, 14, 998–1004. [Google Scholar] [CrossRef]
- Park, H.; Choi, S. Load and load dependent friction identification and compensation of electronic non-circular gear brake system. Int. J. Automot. Technol. 2018, 19, 443–453. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Z.; Shi, B.; He, F. NARX model-based dynamic parametrical model identification of the rotor system with bolted joint. Arch. Appl. Mech. 2021, 91, 2581–2599. [Google Scholar] [CrossRef]
- Peng, C.C.; Li, Y.R. Parameters identification of nonlinear Lorenz chaotic system for high-precision model reference synchronization. Nonlinear Dyn. 2022, 108, 1733–1754. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Ren, X. A Modified Multi-innovation Algorithm to Turntable Servo System Identification. Circuits Syst. Signal Process. 2020, 39, 4339–4353. [Google Scholar] [CrossRef]
- Xu, H.; Ding, F.; Alsaedi, A.; Hayat, T. Recursive identification algorithms for a class of linear closed-loop systems. Int. J. Control Autom. Syst. 2019, 17, 3194–3204. [Google Scholar] [CrossRef]
- Awad, F.; Al-Sadi, A.; Al-Quran, F.; Alsmady, A. Distributed and adaptive location identification system for mobile devices. EURASIP J. Adv. Signal Process. 2018, 2018, 61. [Google Scholar] [CrossRef]
- Fu, Z.; Pun, C.M.; Gao, H.; Lu, H. Endmember extraction of hyperspectral remote sensing images based on an improved discrete artificial bee colony algorithm and genetic algorithm. Mob. Netw. Appl. 2020, 25, 1033–1041. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Ewees, A.A.; Oliva, D.; Abd Elaziz, M.; Lu, S. Improved salp swarm algorithm based on particle swarm optimization for feature selection. J. Ambient Intell. Humaniz. Comput. 2019, 10, 3155–3169. [Google Scholar] [CrossRef]
- Yu, X.W.; Huang, L.P.; Liu, Y.; Zhang, K.; Li, P.; Li, Y. WSN node location based on beetle antennae search to improve the gray wolf algorithm. Wirel. Netw. 2022, 28, 539–549. [Google Scholar] [CrossRef]
- Turgut, M.S.; Sağban, H.M.; Turgut, O.E.; Özmen, Ö.T. Whale optimization and sine–cosine optimization algorithms with cellular topology for parameter identification of chaotic systems and Schottky barrier diode models. Soft Comput. 2021, 25, 1365–1409. [Google Scholar] [CrossRef]
- Khishe, M.; Mosavi, M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020, 149, 113338. [Google Scholar] [CrossRef]
- Kumar, M.; Aggarwal, A.; Rawat, T.K. Bat Algorithm: Application to Adaptive Infinite Impulse Response System Identification. Arab. J. Sci. Eng. 2016, 41, 3587–3604. [Google Scholar] [CrossRef]
- Chen, Y.; Pi, D.; Wang, B. Enhanced global flower pollination algorithm for parameter identification of chaotic and hyper-chaotic system. Nonlinear Dyn. 2019, 97, 1343–1358. [Google Scholar] [CrossRef]
- Lu, M.; Wang, H.; Lin, J.; Yi, A.; Gu, Y.; Zhao, D. A nonlinear Wiener system identification based on improved adaptive step-size glowworm swarm optimization algorithm for three-dimensional elliptical vibration cutting. Int. J. Adv. Manuf. Technol. 2019, 103, 2865–2877. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Y.; Liu, C.; Hu, P.; Jelodar, H.; Yuan, C.; Li, Y.; Masood, I.; Rabbani, M.; Li, B. Selfish herd optimization algorithm based on chaotic strategy for adaptive IIR system identification problem. Soft Comput. 2020, 24, 7637–7684. [Google Scholar] [CrossRef]
- Mao, W.L.; Hung, C.W. Type-2 fuzzy neural network using grey wolf optimizer learning algorithm for nonlinear system identification. Microsyst. Technol. 2018, 24, 4075–4088. [Google Scholar] [CrossRef]
- Fernández, M.A.; Chang, J.Y. A study on finite-time particle swarm optimization as a system identification method. Microsyst. Technol. 2021, 27, 2369–2381. [Google Scholar] [CrossRef]
- Ebrahimi, S.M.; Malekzadeh, M.; Alizadeh, M.; HosseinNia, S.H. Parameter identification of nonlinear system using an improved Lozi map based chaotic optimization algorithm (ILCOA). Evol. Syst. 2021, 12, 255–272. [Google Scholar] [CrossRef]
- Mac, T.T.; Iba, D.; Matsushita, Y.; Mukai, S.; Inoue, T.; Fukushima, A.; Miura, N.; Iizuka, T.; Masuda, A.; Moriwaki, I. Application of genetic algorithms for parameters identification in a developing smart gear system. Forsch. Ing. 2022; to be published. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, F.; Huang, W.; Fan, W. Dwell time algorithm based on bounded constrained least squares under dynamic performance constraints of machine tool in deterministic optical finishing. Int. J. Precis. Eng. Manuf.-Green Technol. 2021, 8, 1415–1427. [Google Scholar] [CrossRef]
- Zhang, Z.; He, R.; Yang, K. A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm. Adv. Manuf. 2022, 10, 114–130. [Google Scholar] [CrossRef]
- Gao, B.; Shen, W.; Guan, H.; Zheng, L.; Zhang, W. Research on Multi-Strategy Improved Evolutionary Sparrow Search Algorithm and its Application. IEEE Access 2022, 10, 62520–62534. [Google Scholar] [CrossRef]
- Gao, B.; Guan, H.; Tang, W.; Han, W.; Xue, S. Research on Position Recognition and Control Method of Single-leg Joint of Hydraulic Quadruped Robot. Recent Adv. Electr. Electron. Eng. 2021, 14, 802–811. [Google Scholar] [CrossRef]
- Jelali, M.; Kroll, A. Hydraulic Servo-Systems: Modelling, Identification and Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002; pp. 69–72. [Google Scholar]
- Milecki, A.; Ortmann, J. Electrohydraulic linear actuator with two stepping motors controlled by overshoot-free algorithm. Mech. Syst. Signal Process. 2017, 96, 45–57. [Google Scholar] [CrossRef]
- Li, M.; Xu, G.; Lai, Q.; Chen, J. A chaotic strategy-based quadratic Opposition-Based Learning adaptive variable-speed whale optimization algorithm. Math. Comput. Simul. 2022, 193, 71–99. [Google Scholar] [CrossRef]
- Tanyildizi, E.; Demir, G. Golden sine algorithm: A novel math-inspired algorithm. Adv. Electr. Comput. Eng. 2017, 17, 71–78. [Google Scholar] [CrossRef]
- Cho, Y.H.; Heo, H. System identification technique for control of hybrid bio-system. J. Mech. Sci. Technol. 2019, 33, 6045–6051. [Google Scholar] [CrossRef]
- Liu, G.; Shu, C.; Liang, Z.; Peng, B.; Cheng, L. A modified sparrow search algorithm with application in 3d route planning for UAV. Sensors 2021, 21, 1224. [Google Scholar] [CrossRef]
- Wu, C.; Fu, X.; Pei, J.; Dong, Z. A Novel Sparrow Search Algorithm for the Traveling Salesman Problem. IEEE Access 2021, 9, 153456–153471. [Google Scholar] [CrossRef]
- Gu, Q.; Hao, X. Adaptive iterative learning control based on particle swarm optimization. J. Supercomput. 2020, 76, 3615–3622. [Google Scholar] [CrossRef]
- Yue, Z.; Zhang, S.; Xiao, W. A novel hybrid algorithm based on grey wolf optimizer and fireworks algorithm. Sensors 2020, 20, 2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, R.; Yang, M.; Wang, S.; Chao, T. An improved whale optimization algorithm with armed force program and strategic adjustment. Appl. Math. Model. 2020, 81, 603–623. [Google Scholar] [CrossRef]
- Nandi, A.; Kamboj, V.K. A Canis lupus inspired upgraded Harris hawks optimizer for nonlinear, constrained, continuous, and discrete engineering design problem. Int. J. Numer. Methods Eng. 2021, 122, 1051–1088. [Google Scholar] [CrossRef]
Notations | Descriptions |
---|---|
The position of the sparrow | |
The number of iterations | |
A uniform random number between (0, 1] | |
A random number that conforms to a normal distribution | |
A unit vector | |
The warning value | |
A safe value | |
The step size control parameter | |
A uniform random number between [−1, 1] | |
The fitness of the current sparrow | |
The initial value of the convergence factor | |
A controlling factor, which can control the amplitude of attenuation, | |
The constant coefficients | |
The specified number of iterations | |
The random numbers of [0, 2π] and [0, π] respectively | |
The golden section coefficients | |
The golden cut ratio | |
The search interval | |
Max_iter | The maximum number of iterations |
N | The number of individuals in population |
d | The dimension |
lb and ub | The population search boundaries |
PD, SD | The proportion of discoverers and joiners |
Number | Function Name | Domain | Dimension | The Optimal Value |
---|---|---|---|---|
Sphere | [−100, 100] | 30 | 0 | |
Schwefel’problem 2.22 | [−10, 10] | 30 | 0 | |
Schwefel’problem 1.2 | [−100, 100] | 30 | 0 | |
Schwefel’problem 2.21 | [−100, 100] | 30 | 0 | |
Generalized Rosenbrock’s Function | [−30, 30] | 30 | 0 | |
Step Function | [−100, 100] | 30 | 0 | |
Quartic Function | [−1.28, 1.28] | 30 | 0 | |
Generalized Schwefel’s problem 2.26 | [−500, 500] | 30 (100) | −12,569.5 (−41,898.3) | |
Generalized Rastrigin’s Function | [−5.12, 5.12] | 30 | 0 | |
Ackley’s Function | [−32, 32] | 30 | 0 | |
Ceneralized Criewank Function | [−600, 600] | 30 | 0 | |
Ceneralized Penalized Function 1 | [−50, 50] | 30 | 0 | |
Ceneralized Penalized Function 2 | [−50, 50] | 30 | 0 | |
Shekell’s Foxholes Function | [−65, 65] | 2 | 1 | |
Kowalik’s Function | [−5, 5] | 4 | 0.0003 | |
Six-Hump Camel-Back Function | [−5, 5] | 2 | −1.03 | |
Branin Function | [−5, 5] | 2 | 0.398 | |
Goldstein-Price Function | [−2, 2] | 2 | 3 | |
Hatman’s Function 1 | [0, 1] | 3 | −3.86 | |
Hatman’s Function 2 | [0, 1] | 6 | −3.32 | |
Shekel’s Family 1 | [0, 10] | 4 | −10 | |
Shekel’s Family 2 | [0, 10] | 4 | −10 | |
Shekel’s Family 3 | [0, 10] | 4 | −10 |
Algorithms | Parameters |
---|---|
PSO | |
GWO | |
WOA | |
HHO | |
SSA | |
GGSC-SSA | |
PRN-SSA |
Index | PSO | GWO | WOA | HHO | SSA | GGSC-SSA | PRN-SSA | |
---|---|---|---|---|---|---|---|---|
Avg | 0.127 | 1.31 × 10−27 | 1.46 × 10−72 | 1.30 × 10−93 | 1.45 × 10−54 | 7.85 × 10−96 | 0 | |
Std | 0.0415 | 1.19 × 10−27 | 2.79 × 10−72 | 2.49 × 10−93 | 2.79 × 10−54 | 1.53 × 10−95 | 0 | |
Avg | 0.847 | 9.63 × 10−17 | 8.8 × 10−50 | 1.9 × 10−50 | 6.21 × 10−30 | 4.59 × 10−46 | 0 | |
Std | 0.139 | 5.9 × 10−17 | 1.6 × 10−49 | 3.35 × 10−50 | 1.15 × 10−29 | 8.83 × 10−46 | 0 | |
Avg | 46.5 | 7.64 × 10−6 | 4.22 × 104 | 7.71 × 10−76 | 5.43 × 10−26 | 2.93 × 10−78 | 0 | |
Std | 18.4 | 8.47 × 10−6 | 1.02 × 104 | 1.48 × 10−75 | 1.04 × 10−25 | 4.76 × 10−78 | 0 | |
Avg | 8.73 | 7.35 × 10−7 | 50.3 | 1.04 × 10−48 | 2.52 × 10−25 | 3.26 × 10−47 | 0 | |
Std | 2.94 | 4.26 × 10−7 | 26.8 | 1.86 × 10−48 | 4.92 × 10−25 | 6.26 × 10−47 | 0 | |
Avg | 117 | 26.9 | 28 | 0.0129 | 3.45 × 10−5 | 8.04 × 10−6 | 5.85 × 10−4 | |
Std | 62.8 | 0.666 | 0.420 | 0.0115 | 4.77 × 10−5 | 1.01 × 10−5 | 1.79 × 10−4 | |
Avg | 0.119 | 0.772 | 0.463 | 1.95 × 10−4 | 3.91 × 10−11 | 1.87 × 10−10 | 7.69 × 10−7 | |
Std | 0.346 | 0.325 | 0.221 | 1.83 × 10−4 | 6.18 × 10−11 | 2.67 × 10−10 | 1.04 × 10−6 | |
Avg | 0.253 | 1.91 × 10−3 | 3.43 × 10−3 | 1.71 × 10−4 | 1.36 × 10−3 | 1.35 × 10−3 | 8.2 × 10−5 | |
Std | 0.0658 | 7.63 × 10−4 | 2.62 × 10−3 | 1.04 × 10−4 | 8.19 × 10−4 | 7.74 × 10−4 | 5.16 × 10−5 |
Index | PSO | GWO | WOA | HHO | SSA | GGSC-SSA | PRN-SSA | |
---|---|---|---|---|---|---|---|---|
Avg | −7.34 × 103 | −6 × 103 | −1.04 × 104 | −1.26 × 104 | −8.52 × 103 | −8.95 × 103 | −1.26 × 104 | |
Std | 633 | 640 | 1.74 × 103 | 16.9 | 591 | 463 | 2.49 | |
Avg | 66.6 | 2.93 | 0 | 0 | 0 | 0 | 0 | |
Std | 13.5 | 3.52 | 0 | 0 | 0 | 0 | 0 | |
Avg | 2.26 | 1.02 × 10−13 | 4.8 × 10−15 | 8.88 × 10−16 | 8.88 × 10−16 | 8.88 × 10−16 | 8.88 × 10−16 | |
Std | 0.863 | 1.21 × 10−14 | 1.79 × 10−15 | 5.92 × 10−31 | 5.92 × 10−31 | 5.92 × 10−31 | 5.92 × 10−31 | |
Avg | 1.13 | 7.49 × 10−3 | 6.26 × 10−3 | 0 | 0 | 0 | 0 | |
Std | 0.49 | 9.28 × 10−3 | 0.0118 | 0 | 0 | 0 | 0 | |
Avg | 8.42 | 0.049 | 0.0239 | 9.52 × 10−6 | 1.52 × 10−12 | 4.96 × 10−12 | 3.15 × 10−8 | |
Std | 2.12 | 0.0212 | 0.0144 | 9.84 × 10−6 | 1.96 × 10−12 | 6.27 × 10−12 | 3.06 × 10−8 | |
Avg | 1.03 | 0.727 | 0.521 | 1.12 × 10−4 | 3.01 × 10−11 | 5.13 × 10−11 | 3.04 × 10−3 | |
Std | 1.8 | 0.177 | 0.209 | 1.11 × 10−4 | 3.67 × 10−11 | 6.3 × 10−11 | 4.62 × 10−3 |
Index | PSO | GWO | WOA | HHO | SSA | GGSC-SSA | PRN-SSA | |
---|---|---|---|---|---|---|---|---|
Avg | 1.22 | 4.8 | 2.75 | 1.43 | 4.47 | 5.52 | 0.998 | |
Std | 0.4 | 3.65 | 1.97 | 0.645 | 4.62 | 5.26 | 5.55 × 10−16 | |
Avg | 6 × 10−4 | 4.43 × 10−3 | 7.72 × 10−4 | 3.84 × 10−4 | 3.62 × 10−4 | 3.36 × 10−4 | 3 × 10−4 | |
Std | 3.35 × 10−4 | 6.37 × 10−3 | 2.92 × 10−4 | 8.73 × 10−5 | 8.39 × 10−5 | 5.27 × 10−5 | 1.49 × 10−5 | |
Avg | −1.03 | −1.03 | −1.03 | −1.03 | −1.03 | −1.03 | −1.03 | |
Std | 4.44 × 10−16 | 4.44 × 10−16 | 4.44 × 10−16 | 4.44 × 10−16 | 4.44 × 10−16 | 4.44 × 10−16 | 4.44 × 10−16 | |
Avg | 0.398 | 0.398 | 0.398 | 0.398 | 0.398 | 0.398 | 0.398 | |
Std | 2.22 × 10−16 | 6.48 × 10−6 | 7.36 × 10−6 | 1.15 × 10−5 | 2.22 × 10−16 | 2.22 × 10−16 | 2.22 × 10−16 | |
Avg | 3 | 3 | 3 | 3 | 4.62 | 3 | 3 | |
Std | 0 | 4.76 × 10−5 | 1.64 × 10−4 | 0 | 3.05 | 0 | 0 | |
Avg | −3.86 | −3.86 | −3.85 | −3.86 | −3.86 | −3.86 | −3.86 | |
Std | 4.88 × 10−15 | 1.66 × 10−3 | 0.0135 | 4.96 × 10−3 | 4.88 × 10−15 | 4.88 × 10−15 | 4.88 × 10−15 | |
Avg | −3.29 | −3.27 | −3.23 | −3.11 | −3.27 | −3.27 | −3.32 | |
Std | 0.0434 | 0.0682 | 0.0905 | 0.0833 | 0.0586 | 0.0579 | 9.21 × 10−3 | |
Avg | −6.74 | −9.34 | −7.91 | −5.34 | −8.73 | −6.43 | −10.1 | |
Std | 3.28 | 1.36 | 2.67 | 0.543 | 2.06 | 1.98 | 0.0201 | |
Avg | −6.06 | −10.4 | −6.69 | −5.08 | −9.02 | −6.48 | −10 | |
Std | 3.11 | 7.62 × 10−4 | 3.21 | 3.87 × 10−3 | 2.04 | 2.04 | 0.689 | |
Avg | −6.7 | −10.4 | −7.92 | −5.15 | −8.7 | −7.53 | −10 | |
Std | 3.68 | 0.318 | 3 | 0.168 | 2.43 | 2.56 | 0.822 |
Input | Algorithm | ||||||
---|---|---|---|---|---|---|---|
PSO | GWO | WOA | HHO | SSA | GGSC-SSA | PRN-SSA | |
Step (1) | 93.45 | 94.46 | 95.45 | 96.35 | 96.53 | 96.56 | 97.54 |
Step (0.5) | 95.58 | 96.40 | 96.59 | 96.80 | 97.95 | 98.61 | 98.92 |
Sinusoidal (2 π) | 93.35 | 95.42 | 96.32 | 96.64 | 96.78 | 96.89 | 98.01 |
Sinusoidal (0.5 π) | 93.44 | 96.30 | 96.45 | 96.79 | 96.96 | 98.62 | 98.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, B.; Shen, W.; Zhao, H.; Zhang, W.; Zheng, L. Reverse Nonlinear Sparrow Search Algorithm Based on the Penalty Mechanism for Multi-Parameter Identification Model Method of an Electro-Hydraulic Servo System. Machines 2022, 10, 561. https://doi.org/10.3390/machines10070561
Gao B, Shen W, Zhao H, Zhang W, Zheng L. Reverse Nonlinear Sparrow Search Algorithm Based on the Penalty Mechanism for Multi-Parameter Identification Model Method of an Electro-Hydraulic Servo System. Machines. 2022; 10(7):561. https://doi.org/10.3390/machines10070561
Chicago/Turabian StyleGao, Bingwei, Wei Shen, Hongjian Zhao, Wei Zhang, and Lintao Zheng. 2022. "Reverse Nonlinear Sparrow Search Algorithm Based on the Penalty Mechanism for Multi-Parameter Identification Model Method of an Electro-Hydraulic Servo System" Machines 10, no. 7: 561. https://doi.org/10.3390/machines10070561
APA StyleGao, B., Shen, W., Zhao, H., Zhang, W., & Zheng, L. (2022). Reverse Nonlinear Sparrow Search Algorithm Based on the Penalty Mechanism for Multi-Parameter Identification Model Method of an Electro-Hydraulic Servo System. Machines, 10(7), 561. https://doi.org/10.3390/machines10070561