Remaining Useful Life Prediction of Aeroengines Based on Multi-Head Attention Mechanism
Abstract
:1. Introduction
2. Theoretical Basis
2.1. Convolutional Neural Network
2.2. Temporal Convolutional Network
2.3. Multi-Head Attention
3. Proposed Methodology
- Data preprocessing: According to the existing research experience [24,25,26], from among the 21 sensors, 14 sensors with large changes are selected. The 14 selected sensors are processed by exponential smoothing (ES) to remove environmental noise and retain the original degradation messages. Then, the sensors used as features are normalized to remove dimensional interference. A sliding window is introduced for secondary processing of preprocessed data. As the length of the sliding window increases, more data information is collected. However, this may cause the short-term state change to be ignored. Therefore, this article selects sliding windows with lengths of 30 and 40.
- Model construction: The RUL tag on the divided training dataset is used as the input of the prediction model to train the model. We constructed a 14-channel CNN-TCN network for separate modeling of different features to enable parallel processing of different data. Subsequently, we chose the concatenate function in the Merge layer to stitch the multidimensional data, and two dense layers were utilized to regress.
- RUL prediction: The trained model is called to make predictions about the test set, and the prediction results are compared with the true values.
4. Experiment
4.1. Dataset Description
4.2. Sensors Selection
4.3. Exponential Smoothing
4.4. Data Normalization
4.5. RUL Target Function
4.6. Metrics
5. Results and Analysis
5.1. Ablation Study
5.1.1. Time Window
5.1.2. Model Features
5.2. Comparison with the State-of-the-Art Models
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, Z.; Zhang, Q.; Shao, S.; Zhao, Y.; Zhou, H.; Chen, C. Remaining Useful Life Prediction of Aeroengine Based on Ghost Approach. In Proceedings of the 2021 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), Xi’an, China, 21–23 October 2021; pp. 1–6. [Google Scholar]
- Kim, T.S.; Sohn, S.Y. Multitask learning for health condition identification and remaining useful life prediction: Deep convolutional neural network approach. J. Intell. Manuf. 2021, 32, 2169–2179. [Google Scholar] [CrossRef]
- Liu, J.Q.; Lei, F.; Pan, C.L.; Hu, D.B.; Zuo, H.F. Prediction of remaining useful life of multi-stage aero-engine based on clustering and LSTM fusion. Reliab. Eng. Syst. Saf. 2021, 214, 107807. [Google Scholar] [CrossRef]
- Wang, C.; Lu, N.; Cheng, Y.; Jiang, B. A Data-Driven Aero-Engine Degradation Prognostic Strategy. IEEE Trans. Cybern. 2021, 51, 1531–1541. [Google Scholar] [CrossRef] [PubMed]
- Elsheikh, A.; Yacout, S.; Ouali, M.S. Bidirectional handshaking LSTM for remaining useful life prediction. Neurocomputing 2019, 323, 148–156. [Google Scholar] [CrossRef]
- Wu, D.Z.; Jennings, C.; Terpenny, J.; Gao, R.X.; Kumara, S. A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests. J. Manuf. Sci. Eng. Trans. Asme 2017, 139, 071018. [Google Scholar] [CrossRef]
- Vachtsevanos, G.; Lewis, F.; Roemer, M.; Hess, A.; Wu, B. Intelligent Fault Diagnosis and Prognosis for Engineering Systems; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Kai, G.; Celaya, J.; Sankararaman, S.; Roychoudhury, I.; Saxena, A. Prognostics: The Science of Making Predictions; CreateSpace Independent Publishing Platform: Charleston, SC, USA, 2017. [Google Scholar]
- Zhou, Y.P.; Huang, M.H.; Chen, Y.P.; Tao, Y. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction. J. Power Sources 2016, 321, 1–10. [Google Scholar] [CrossRef]
- Yang, F.; Habibullah, M.S.; Zhang, T.Y.; Xu, Z.; Lim, P.; Nadarajan, S. Health Index-Based Prognostics for Remaining Useful Life Predictions in Electrical Machines. IEEE Trans. Ind. Electron. 2016, 63, 2633–2644. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; Lee, K.; Lee, S.; Chung, J.; Kim, C.W.; Yoon, J. Data-driven health condition and RUL prognosis for liquid filtration systems. J. Mech. Sci. Technol. 2021, 35, 1597–1607. [Google Scholar] [CrossRef]
- Guo, L.; Li, N.P.; Jia, F.; Lei, Y.G.; Lin, J. A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing 2017, 240, 98–109. [Google Scholar] [CrossRef]
- Ansari, S.; Ayob, A.; Lipu, M.S.H.; Hussain, A.; Saad, M.H.M. Multi-Channel Profile Based Artificial Neural Network Approach for Remaining Useful Life Prediction of Electric Vehicle Lithium-Ion Batteries. Energies 2021, 14, 7521. [Google Scholar] [CrossRef]
- Peng, C.; Chen, Y.F.; Chen, Q.; Tang, Z.H.; Li, L.L.; Gui, W.H. A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion. Sensors 2021, 21, 418. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.Y.; Huang, X.Z.; Li, Y.X.; Iqbal, M.Y. A Double-Channel Hybrid Deep Neural Network Based on CNN and BiLSTM for Remaining Useful Life Prediction. Sensors 2020, 20, 7109. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Li, X.Y.; He, D. A Directed Acyclic Graph Network Combined With CNN and LSTM for Remaining Useful Life Prediction. IEEE Access 2019, 7, 75464–75475. [Google Scholar] [CrossRef]
- Nilwong, S.; Hossain, D.; Kaneko, S.; Capi, G. Deep Learning-Based Landmark Detection for Mobile Robot Outdoor Localization. Machines 2019, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Pham, M.T.; Kim, J.M.; Kim, C.H. 2D CNN-Based Multi-Output Diagnosis for Compound Bearing Faults under Variable Rotational Speeds. Machines 2021, 9, 199. [Google Scholar] [CrossRef]
- Yang, B.Y.; Liu, R.N.; Zio, E. Remaining Useful Life Prediction Based on a Double-Convolutional Neural Network Architecture. IEEE Trans. Ind. Electron. 2019, 66, 9521–9530. [Google Scholar] [CrossRef]
- Wang, B.; Lei, Y.; Li, N.; Yan, T. Deep separable convolutional network for remaining useful life prediction of machinery. Mech. Syst. Signal Process. 2019, 134, 106330. [Google Scholar] [CrossRef]
- He, K.; Su, Z.; Tian, X.; Yu, H.; Luo, M. RUL Prediction of Wind Turbine Gearbox Bearings Based on Self-Calibration Temporal Convolutional Network. IEEE Trans. Instrum. Meas. 2022, 71, 3501912. [Google Scholar] [CrossRef]
- Pan, M.; Hu, P.; Gao, R.; Liang, K. Multistep prediction of remaining useful life of proton exchange membrane fuel cell based on temporal convolutional network. Int. J. Green Energy 2022. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, W.; Li, Q. Dual-Aspect Self-Attention Based on Transformer for Remaining Useful Life Prediction. IEEE Trans. Instrum. Meas. 2022, 71, 2505711. [Google Scholar] [CrossRef]
- Caceres, J.; Gonzalez, D.; Zhou, T.; Droguett, E.L. A probabilistic Bayesian recurrent neural network for remaining useful life prognostics considering epistemic and aleatory uncertainties. Struct. Control. Health Monit. 2021, 28, e2811. [Google Scholar] [CrossRef]
- Shi, Z.; Chehade, A. A dual-LSTM framework combining change point detection and remaining useful life prediction. Reliab. Eng. Syst. Saf. 2021, 205, 107257. [Google Scholar] [CrossRef]
- Xiong, M.L.; Wang, H.W.; Fu, Q.; Xu, Y. Digital twin-driven aero-engine intelligent predictive maintenance. Int. J. Adv. Manuf. Technol. 2021, 114, 3751–3761. [Google Scholar] [CrossRef]
- Frederick, D.K.; Decastro, J.A.; Litt, J.S. User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS); NASA: Washington, DC, USA, 2007.
- De Marco, L.M.; Trierweiler, J.O.; Farenzena, M. Determination of Remaining Useful Life in Cyclic Processes. Ind. Eng. Chem. Res. 2019, 58, 22048–22063. [Google Scholar] [CrossRef]
- Cai, H.S.; Feng, J.S.; Li, W.Z.; Hsu, Y.M.; Lee, J. Similarity-based Particle Filter for Remaining Useful Life prediction with enhanced performance. Appl. Soft Comput. 2020, 94, 106474. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z.; Jia, W.; Lin, X. Remaining Useful Life Prediction Using a Novel Feature-Attention-Based End-to-End Approach. IEEE Trans. Ind. Inform. 2021, 17, 1197–1207. [Google Scholar] [CrossRef]
- Ellefsen, A.L.; Bjørlykhaug, E.; Æsøy, V.; Ushakov, S.; Zhang, H.X. Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture. Reliab. Eng. Syst. Saf. 2019, 183, 240–251. [Google Scholar] [CrossRef]
- Ding, H.; Yang, L.; Cheng, Z.; Yang, Z. A remaining useful life prediction method for bearing based on deep neural networks. Measurement 2021, 172, 108878. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, Z.; Wu, K.; Wang, C.; Wu, M.; Li, X. KDnet-RUL: A Knowledge Distillation Framework to Compress Deep Neural Networks for Machine Remaining Useful Life Prediction. IEEE Trans. Ind. Electron. 2022, 69, 2022–2032. [Google Scholar] [CrossRef]
- Huang, C.G.; Huang, H.Z.; Li, Y.F. A Bidirectional LSTM Prognostics Method Under Multiple Operational Conditions. IEEE Trans. Ind. Electron. 2019, 66, 8792–8802. [Google Scholar] [CrossRef]
- Zheng, S.; Ristovski, K.; Farahat, A.; Gupta, C. Long Short-Term Memory Network for Remaining Useful Life Estimation. In Proceedings of the IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21 June 2017; pp. 88–95. [Google Scholar]
- Li, X.; Ding, Q.; Sun, J.Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng. Syst. Saf. 2018, 172, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hou, G.S.; Xu, S.; Zhou, N.; Yang, L.; Fu, Q.H. Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on an Autoencoder Scheme. Comput. Intell. Neurosci. 2020, 2020, 9601389. [Google Scholar] [CrossRef] [PubMed]
Dataset | FD001 | FD003 |
---|---|---|
Training engines | 100 | 100 |
Testing engines | 100 | 100 |
Sensor measurements | 12 | 12 |
Operation conditions | 1 | 1 |
Fault modes | 1 | 2 |
No. | Symbol | Description | Units |
---|---|---|---|
1 | T2 | Total temperature at fan inlet | (°) |
2 | T24 | Total temperature at LPC outlet | (°) |
3 | T30 | Total temperature at HPC outlet | (°) |
4 | T50 | Total temperature at LPT outlet | (°) |
5 | P2 | Pressure at fan inlet | Pa |
6 | P15 | Total pressure in bypass-duct | Pa |
7 | P30 | Total pressure at HPC outlet | Pa |
8 | Nf | Physical fan speed | r/min |
9 | Nc | Physical core speed | r/min |
10 | epr | Engine pressure ratio (P50/P2) | - |
11 | Ps30 | Static pressure at HPC outlet | Pa |
12 | Phi | Ratio of fuel flow to Ps30 | pps/psi |
13 | NRf | Corrected fan speed | r/min |
14 | NRc | Corrected core speed | r/min |
15 | BPR | Bypass Ratio | - |
16 | FarB | Burner fuel-air ratio | - |
17 | htBleed | Bleed Enthalpy | - |
18 | Nf_dmd | Demanded fan speed | r/min |
19 | PCNfR_dmd | Demanded corrected fan speed | r/min |
20 | W31 | HPT coolant bleed | lbm/s |
21 | W32 | LPT coolant bleed | lbm/s |
Time Window Length | FD001 | FD003 | ||
---|---|---|---|---|
RMSE | Score | RMSE | Score | |
Ltw = 10 | 17.12 | 226 | 16.45 | 635 |
Ltw = 20 | 14.73 | 115 | 15.22 | 522 |
Ltw = 30 | 11.07 | 62 | 11.25 | 126 |
Ltw = 40 | 13.78 | 117 | 10.39 | 95 |
Ltw = 50 | 13.90 | 129 | 11.81 | 220 |
Ltw = 60 | 14.54 | 91 | 13.59 | 273 |
Ltw = 70 | 14.42 | 103 | 13.00 | 191 |
Model | FD001 | FD003 | ||
---|---|---|---|---|
RMSE | Score | RMSE | Score | |
1-layer CNN + 1-layer TCN | 12.04 | 91 | 12.50 | 187 |
1-layer CNN + 2-layer TCN | 14.43 | 76 | 12.95 | 310 |
2-layer CNN + 2-layer TCN | 14.91 | 119 | 13.47 | 274 |
2-layer CNN + 1-layer TCN | 11.07 | 62 | 10.39 | 95 |
3-layer CNN + 1-layer TCN | 14.23 | 88 | 12.49 | 158 |
4-layer CNN + 1-layer TCN | 13.30 | 93 | 11.59 | 303 |
5-layer CNN + 1-layer TCN | 15.34 | 109 | 13.42 | 156 |
Model | FD001 | FD003 | ||
---|---|---|---|---|
RMSE | Score | RMSE | Score | |
filters = 64, kernel size = 3 | 11.57 | 75 | 13.21 | 185 |
filters = 64, kernel size = 2 | 15.94 | 172 | 12.81 | 181 |
filters = 32, kernel size = 3 | 11.07 | 62 | 10.39 | 95 |
filters = 32, kernel size = 2 | 13.38 | 78 | 12.96 | 220 |
Type | Definition | Output |
---|---|---|
Input Layer | The input layer | (30, 1) |
Conv1D | filters = 32, kernel size = 3 | (30, 32) |
Batch Norm | Batch Normalization | (30, 32) |
Conv1D | filters = 32, kernel size = 3 | (30, 32) |
Batch Norm | Batch Normalization | (30, 32) |
TCN | filters = 32, kernel size = 3 | (30, 32) |
Batch Norm | Batch Normalization | (30, 32) |
SeqSelfAttention | Self-attentional layer | (30, 32) |
MaxPooling1D | The pooling layer | (15, 32) |
Flatten | Returns a 1D array | (480) |
Concatenate | Merge the 14D channels | (6720) |
Dense | Network structure is (6720, 50) | (50) |
Dense | Network structure is (50, 1) | (1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, L.; Xu, S.; Zhang, L.; Yin, Y.; Dong, Z.; Zhou, X. Remaining Useful Life Prediction of Aeroengines Based on Multi-Head Attention Mechanism. Machines 2022, 10, 552. https://doi.org/10.3390/machines10070552
Nie L, Xu S, Zhang L, Yin Y, Dong Z, Zhou X. Remaining Useful Life Prediction of Aeroengines Based on Multi-Head Attention Mechanism. Machines. 2022; 10(7):552. https://doi.org/10.3390/machines10070552
Chicago/Turabian StyleNie, Lei, Shiyi Xu, Lvfan Zhang, Yehan Yin, Zhengqiong Dong, and Xiangdong Zhou. 2022. "Remaining Useful Life Prediction of Aeroengines Based on Multi-Head Attention Mechanism" Machines 10, no. 7: 552. https://doi.org/10.3390/machines10070552
APA StyleNie, L., Xu, S., Zhang, L., Yin, Y., Dong, Z., & Zhou, X. (2022). Remaining Useful Life Prediction of Aeroengines Based on Multi-Head Attention Mechanism. Machines, 10(7), 552. https://doi.org/10.3390/machines10070552