Nonlinear Extended State Observer Based Prescribed Performance Control for Quadrotor UAV with Attitude and Input Saturation Constraints
Abstract
:1. Introduction
- 1.
- The control scheme is developed by the DSC technique with two auxiliary systems designed for attitude and input saturation constraints. Additionally, the prescribed performance method provides a more intuitive way to adjust the tracking speed and steady-state error.
- 2.
- Considering the limitations of existing ESOs, two nonlinear ESOs are developed for approximating the pure-feedback subsystems of quadrotor UAV. Under such scheme, only one ESO is utilized for each quadrotor UF subsystem to estimate both the matched and unmatched disturbances with multiple state observations. Thus, a uniform convergence speed can be obtained, and the complexity of the observer’s parameter adjustment are reduced compared to conventional ESO designs.
- 3.
- To improve the control stability of quadrotor UAV, the input saturation constraint is modified to exert on the thrust force generated by each rotor rather than the synthetic torque and force control inputs. Furthermore, the attitude constraint is firstly taken into account for stabilizing a quadrotor UAV. The constraint is realized by a saturation function with an auxiliary system as compensation to keep the inclination of quadrotor UAV within safety region.
2. Problem Formulation and Preliminaries
2.1. Problem Formulation
2.2. Input and State Constraints
2.3. Prescribe Performance
- (1)
- I without a superscript represents a identity matrix;
- (2)
- 0 represents a zero matrix with proper dimensions;
- (3)
- represents the column vector.
3. ESO Design
4. Controller Design
- (1)
- are the estimated variables,
- (2)
- are the estimated errors,
- (3)
- and are the maximum and minimum eigenvalues of matrix A.
4.1. Controller Design for Underactuated System
4.2. Controller Design for Fully Actuated System
4.3. Constraint Design for Actuator System
4.4. Stability Analysis
5. Simulation Results
- (1)
- Integral squared errors (ISE) of position are defined as [31]where , and are position errors, thus the controller with lower ISE index reflects a fast convergence speed.
- (2)
- Integral time-multiplied absolute errors (ITAE) of position are defined as [31]Different from ISE, ITAE considers the steady-state error rather than the initial response, thus the controller with lower ITAE index reflects a smaller steady-state errors.
- (3)
- Maximum inclination angle (MIA) is .
- (4)
- Variance of thrust force (VTF). The controller with a lower VTF index reflects a smooth output and less aggressive maneuvers.
- (5)
- Root mean square error of estimated force disturbances (RMSEEFD). The observer with lower RMSEEFD index means a faster convergence speed and fewer oscillations during estimation of the force disturbances on the translational dynamics.
- (6)
- Root mean square error of estimated torque disturbances (RMSEETD). The observer with lower RMSEETD index means a faster convergence speed and less oscillations during estimation of the force disturbances on the rotational dynamics.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Fourlas, G.K.; Karras, G.C. A Survey on Fault Diagnosis and Fault-Tolerant Control Methods for Unmanned Aerial Vehicles. Machines 2021, 9, 197. [Google Scholar] [CrossRef]
- Ren, J.; Liu, D.X.; Li, K.; Liu, J.; Feng, Y.; Lin, X. Cascade PID Controller for Quadrotor. In Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA), Ningbo, China, 1–3 August 2016; pp. 120–124. [Google Scholar] [CrossRef]
- Andrade, F.A.A.; Guedes, I.P.; Carvalho, G.F.; Zachi, A.R.L.; Haddad, D.B.; Almeida, L.F.; de Melo, A.G.; Pinto, M.F. Unmanned Aerial Vehicles Motion Control with Fuzzy Tuning of Cascaded-PID Gains. Machines 2022, 10, 12. [Google Scholar] [CrossRef]
- Rinaldi, F.; Gargioli, A.; Quagliotti, F. PID and LQ Regulation of a Multirotor Attitude: Mathematical Modelling, Simulations and Experimental Results. J. Intell. Robot. Syst. 2014, 73, 33–50. [Google Scholar] [CrossRef]
- Das, A.; Subbarao, K.; Lewis, F. Dynamic Inversion with Zero-dynamics Stabilization for Quadrotor Control. IET Control. Theory Appl. 2009, 3, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Mokhtari, A.; Benallegue, A.; Orlov, Y. Exact Linearization and Sliding Mode Observer for a Quadrotor Unmanned Aerial Vehicle. Int. J. Robot. Autom. 2006, 1, 39–49. [Google Scholar] [CrossRef]
- Lee, D.; Sastry, S. Feedback Linearization vs. Adaptive Sliding Mode Control for a Quadrotor Helicopter. Int. J. Control. Autom. Syst. 2009, 7, 419–428. [Google Scholar] [CrossRef]
- Bouabdallah, S.; Siegwart, R. Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 2247–2252. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Gai, W.; Zhang, J.; Li, Y. Nonlinear Adaptive Backstepping with ESO for the Quadrotor Trajectory Tracking Control in the Multiple Disturbances. Int. J. Control. Autom. Syst. 2019, 17, 2754–2768. [Google Scholar] [CrossRef]
- Tripathi, V.K.; Kamath, A.K.; Verma, N.K.; Behera, L. Fast Terminal Sliding Mode Super Twisting Controller For Position And Altitude Tracking of the Quadrotor. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6468–6474. [Google Scholar] [CrossRef]
- Xiong, J.J.; Zhang, G.B. Global Fast Dynamic Terminal Sliding Mode Control for a Quadrotor UAV. ISA Trans. 2017, 66, 233–240. [Google Scholar] [CrossRef]
- Xiong, J.J.; Zheng, E.H. Position and Attitude Tracking Control for a Quadrotor UAV. ISA Trans. 2014, 53, 725–731. [Google Scholar] [CrossRef]
- Shao, X.; Meng, Q.; Liu, J.; Wang, H. RISE and Disturbance Compensation Based Trajectory Tracking Control for a Quadrotor UAV Without Velocity Measurements. Aerosp. Sci. Technol. 2018, 74, 145–159. [Google Scholar] [CrossRef]
- Shao, X.; Wang, L.; Li, J.; Liu, J. High-Order ESO Based Output Feedback Dynamic Surface Control for Quadrotors Under Position Constraints and Uncertainties. Aerosp. Sci. Technol. 2019, 89, 288–298. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Zhang, X.; Sun, Q.; Sun, M. A Novel Control Scheme for Quadrotor UAV Based Upon Active Disturbance Rejection Control. Aerosp. Sci. Technol. 2018, 79, 601–609. [Google Scholar] [CrossRef]
- Guo, K.; Jia, J.; Yu, X.; Guo, L.; Xie, L. Multiple Observers Based Anti-Disturbance Control for a Quadrotor UAV Against Payload and Wind Disturbances. Control. Eng. Pract. 2020, 102, 104560. [Google Scholar] [CrossRef]
- Ríos, H.; Falcón, R.; González, O.A.; Dzul, A. Continuous Sliding Mode Control Strategies for Quadrotor Robust Tracking: Real-Time Application. IEEE Trans. Ind. Electron. 2019, 66, 1264–1272. [Google Scholar] [CrossRef]
- Liu, H.; Li, D.; Zuo, Z.; Zhong, Y. Robust Three-Loop Trajectory Tracking Control for Quadrotors With Multiple Uncertainties. IEEE Trans. Ind. Electron. 2016, 63, 2263–2274. [Google Scholar] [CrossRef]
- Castillo, A.; Sanz, R.; Garcia, P.; Qiu, W.; Wang, H.; Xu, C. Disturbance Observer-based Quadrotor Attitude Tracking Control for Aggressive Maneuvers. Control. Eng. Pract. 2019, 82, 14–23. [Google Scholar] [CrossRef]
- Bechlioulis, C.P.; Rovithakis, G.A. Robust Adaptive Control of Feedback Linearizable MIMO Nonlinear Systems With Prescribed Performance. IEEE Trans. Autom. Control. 2008, 53, 2090–2099. [Google Scholar] [CrossRef]
- Wang, W.; Wang, D.; Peng, Z.; Li, T. Prescribed Performance Consensus of Uncertain Nonlinear Strict-Feedback Systems With Unknown Control Directions. IEEE Trans. Syst. Man, Cybern. Syst. 2016, 46, 1279–1286. [Google Scholar] [CrossRef]
- Yang, Y.; Tan, J.; Yue, D. Prescribed Performance Tracking Control of a Class of Uncertain Pure-Feedback Nonlinear Systems With Input Saturation. IEEE Trans. Syst. Man, Cybern. Syst. 2020, 50, 1733–1745. [Google Scholar] [CrossRef]
- Liu, K.; Wang, R. Antisaturation Command Filtered Backstepping Control-Based Disturbance Rejection for a Quadarotor UAV. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3577–3581. [Google Scholar] [CrossRef]
- Wang, D.; Huang, J. Neural Network-based Adaptive Dynamic Surface Control for a Class of Uncertain Nonlinear Systems in Strict-feedback Form. IEEE Trans. Neural Networks 2005, 16, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Swaroop, D.; Hedrick, J.; Yip, P.; Gerdes, J. Dynamic Surface Control for a Class of Nonlinear Systems. IEEE Trans. Autom. Control. 2000, 45, 1893–1899. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Li, F.; Cao, X.; Guo, C. Prescribed performance dynamic surface control for trajectory tracking of quadrotor UAV with uncertainties and input constraints. Int. J. Control. 2021, 94, 2945–2955. [Google Scholar] [CrossRef]
- Sebesta, K.D.; Boizot, N. A Real-Time Adaptive High-Gain EKF, Applied to a Quadcopter Inertial Navigation System. IEEE Trans. Ind. Electron. 2014, 61, 495–503. [Google Scholar] [CrossRef]
- Marantos, P.; Koveos, Y.; Kyriakopoulos, K.J. UAV State Estimation Using Adaptive Complementary Filters. IEEE Trans. Control. Syst. Technol. 2016, 24, 1214–1226. [Google Scholar] [CrossRef]
- Wu, J. MARG Attitude Estimation Using Gradient-Descent Linear Kalman Filter. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1777–1790. [Google Scholar] [CrossRef]
- Yang, Y.; Tan, J.; Yue, D. Prescribed Performance Control of One-DOF Link Manipulator with Uncertainties and Input Saturation Constraint. IEEE/CAA J. Autom. Sin. 2019, 6, 148–157. [Google Scholar] [CrossRef]
- Liu, K.; Wang, R.; Zheng, S.; Dong, S.; Sun, G. Fixed-Time Disturbance Observer-based Robust Fault-Tolerant Tracking Control for Uncertain Quadrotor UAV Subject to Input Delay. Nonlinear Dyn. 2022, 107, 2363–2390. [Google Scholar] [CrossRef]
- Xi, R.D.; Xiao, X.; Ma, T.N.; Yang, Z.X. Adaptive Sliding Mode Disturbance Observer Based Robust Control for Robot Manipulators Towards Assembly Assistance. IEEE Robot. Autom. Lett. 2022, 7, 6139–6146. [Google Scholar] [CrossRef]
- Han, J. From PID to Active Disturbance Rejection Control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, Y.; Celler, B.G.; Su, S.W. Backstepping Control of Electro-Hydraulic System Based on Extended-State-Observer With Plant Dynamics Largely Unknown. IEEE Trans. Ind. Electron. 2016, 63, 6909–6920. [Google Scholar] [CrossRef]
- Yao, J.; Jiao, Z.; Ma, D. Extended State Observer Based Output Feedback Nonlinear Robust Control of Hydraulic Systems With Backstepping. IEEE Trans. Ind. Electron. 2014, 61, 6285–6293. [Google Scholar] [CrossRef]
- Liu, K.; Wang, X.; Wang, R.; Sun, G.; Wang, X. Antisaturation Finite-Time Attitude Tracking Control Based Observer for a Quadrotor. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2047–2051. [Google Scholar] [CrossRef]
- Niu, Y.; Ban, H.; Zhang, H.; Gong, W.; Yu, F. Nonsingular Terminal Sliding Mode Based Finite-Time Dynamic Surface Control for a Quadrotor UAV. Algorithms 2021, 14, 315. [Google Scholar] [CrossRef]
- Wang, N.; Su, S.F.; Han, M.; Chen, W.H. Backpropagating Constraints-Based Trajectory Tracking Control of a Quadrotor With Constrained Actuator Dynamics and Complex Unknowns. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1322–1337. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yang, J.; Chen, W.H.; Chen, X. Generalized Extended State Observer Based Control for Systems With Mismatched Uncertainties. IEEE Trans. Ind. Electron. 2012, 59, 4792–4802. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Li, S.; Chen, W.H. Nonlinear Disturbance Observer-based Control for Multi-Input Multi-Output Nonlinear Systems Subject to Mismatching Condition. Int. J. Control. 2012, 85, 1071–1082. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Liu, J. Trajectory Tracking Control of a 6-DOF Quadrotor UAV with Input Saturation via Backstepping. J. Frankl. Inst. 2018, 355, 3288–3309. [Google Scholar] [CrossRef]
- Chen, M.; Ge, S.S.; Ren, B. Adaptive Tracking Control of Uncertain MIMO Nonlinear Systems With Input Constraints. Automatica 2011, 47, 452–465. [Google Scholar] [CrossRef]
- Shao, X.; Hu, Q.; Shi, Y.; Jiang, B. Fault-Tolerant Prescribed Performance Attitude Tracking Control for Spacecraft Under Input Saturation. IEEE Trans. Control. Syst. Technol. 2020, 28, 574–582. [Google Scholar] [CrossRef]
- Esfandiari, K.; Abdollahi, F.; Talebi, H.A. Adaptive Control of Uncertain Nonaffine Nonlinear Systems With Input Saturation Using Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 2311–2322. [Google Scholar] [CrossRef] [PubMed]
- Madani, T.; Benallegue, A. Backstepping Control for a Quadrotor Helicopter. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 3255–3260. [Google Scholar] [CrossRef]
- Mahony, R.; Kumar, V.; Corke, P. Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor. IEEE Robot. Autom. Mag. 2012, 19, 20–32. [Google Scholar] [CrossRef]
- Pizetta, I.H.B.; Brandão, A.S.; Sarcinelli-Filho, M. UAV Thrust Model Identification Using Spectrogram Analysis. Automation 2021, 2, 141–152. [Google Scholar] [CrossRef]
- Yoo, S.J. Fault-Tolerant Control of Strict-Feedback Nonlinear Time-Delay Systems With Prescribed Performance. IET Control. Theory Appl. 2013, 7, 1553–1561. [Google Scholar] [CrossRef]
- Isidori, A. Nonlinear Control Systems; Springer: New York, NY, USA, 1995. [Google Scholar]
- Khalil, H.K.; Praly, L. High-Gain Observers in Nonlinear Feedback Control. Int. J. Robust Nonlinear Control. 2014, 24, 993–1015. [Google Scholar] [CrossRef]
- Malik, S.C.; Arora, S. Mathematical Analysis, 2nd ed.; New Age: New Delhi, India, 1992. [Google Scholar]
- Ma, T.; Wong, S. Trajectory tracking control for quadrotor UAV. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, Macao, 5–8 December 2017; pp. 1751–1756. [Google Scholar] [CrossRef]
- Liu, K.; Wang, R.; Wang, X.; Wang, X. Anti-Saturation Adaptive Finite-Time Neural Network Based Fault-Tolerant Tracking Control for a Quadrotor UAV With External Disturbances. Aerosp. Sci. Technol. 2021, 115, 106790. [Google Scholar] [CrossRef]
- Guerrero-Sánchez, M.E.; Hernández-González, O.; Valencia-Palomo, G.; López-Estrada, F.R.; Rodríguez-Mata, A.E.; Garrido, J. Filtered Observer-Based IDA-PBC Control for Trajectory Tracking of a Quadrotor. IEEE Access 2021, 9, 114821–114835. [Google Scholar] [CrossRef]







| Description | Values | Unit |
|---|---|---|
| Body mass | 0.7735 | Kg |
| Body inertia | , | Kg |
| Rotor arm | m | |
| Rotor thrust drag coefficient | NA | |
| Rotor thrust range | , | N |
| Air drag coefficient | , |
| Controller | ISE | ITAE | MIA | VTF | RMSEEFD | RMSEETD |
|---|---|---|---|---|---|---|
| CPID | - | - | ||||
| ADRC | ||||||
| PPDSC | ||||||
| PPAISC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.-N.; Xi, R.-D.; Xiao, X.; Yang, Z.-X. Nonlinear Extended State Observer Based Prescribed Performance Control for Quadrotor UAV with Attitude and Input Saturation Constraints. Machines 2022, 10, 551. https://doi.org/10.3390/machines10070551
Ma T-N, Xi R-D, Xiao X, Yang Z-X. Nonlinear Extended State Observer Based Prescribed Performance Control for Quadrotor UAV with Attitude and Input Saturation Constraints. Machines. 2022; 10(7):551. https://doi.org/10.3390/machines10070551
Chicago/Turabian StyleMa, Tie-Nan, Rui-Dong Xi, Xiao Xiao, and Zhi-Xin Yang. 2022. "Nonlinear Extended State Observer Based Prescribed Performance Control for Quadrotor UAV with Attitude and Input Saturation Constraints" Machines 10, no. 7: 551. https://doi.org/10.3390/machines10070551
APA StyleMa, T.-N., Xi, R.-D., Xiao, X., & Yang, Z.-X. (2022). Nonlinear Extended State Observer Based Prescribed Performance Control for Quadrotor UAV with Attitude and Input Saturation Constraints. Machines, 10(7), 551. https://doi.org/10.3390/machines10070551

