# An AI-Based Fast Design Method for New Centrifugal Compressor Families

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Step 1: 1D Single-Zone Model Implementation and Validation

#### 2.2. Step 2: ANOVA

#### 2.3. Step 3: Sobol Sequence

#### 2.4. Step 4: Artificial Neural Network

#### 2.5. Step 5: Validation of Promising Solutions through CFD Analyses

## 3. Results and Discussion

#### 3.1. Step 1: Validation of 1D Single-Zone Model

#### 3.2. Step 2: ANOVA Results

#### 3.3. Step 3: Sobol Sequence

#### 3.4. Step 4: Artificial Neural Network

#### 3.5. Step 5: Validation of Promising Solutions through CFD Analyses

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Nomenclature

$A$ | Area |

$a$ | Velocity of sound |

$b$ | Blade height |

$c$ | Absolute velocity |

${c}_{f}$ | Friction coefficient |

${C}_{p}$ | Specific heat ratio |

$D$ | Diameter |

${D}_{f}$ | Diffusion factor |

${f}_{inc}$ | Incidence factor |

$H$ | Entalpy |

$h$ | Specific entalpy |

$k$ | Specific heat ratio |

$L$ | Blade length |

$\dot{m}$ | Mass flow rate |

${M}_{u}$ | Peripheral Mach number |

$P$ | Pressure |

$Q$ | Volume flow rate |

$r$ | Radius |

$s$ | Specific entropy |

$T$ | Temperature |

$t$ | Thickness |

$U$ | Peripheral velocity |

$w$ | Relative velocity |

$Z$ | Effective number of blades |

$\Delta $ | Variation |

$\alpha $ | Absolute angle |

$\beta $ | Relative angle/pressure ratio |

$\gamma $ | Blade slope angle |

$\epsilon $ | Wake fraction of blade-to-blade space |

$\eta $ | Polytropic efficiency |

$\tau $ | Work coefficient |

$\varphi $ | Flow coefficient |

$\psi $ | Polytropic head |

Subscripts | |

0 | Total quantity |

1 | Impeller inlet |

2 | Impeller outlet |

3 | Diffuser outlet |

4 | Volute outlet |

bl | Blade |

bld | Blade loading |

ch | Choke |

cl | Clearance |

df | Disc friction |

e | Exit cone |

h | hub |

hs | Hub-to-shroud distortion |

hyd | Hydraulic |

in | incidence |

LE | Leading edge |

lk | leakage |

m | Meridional component |

mix | mixing |

p | Polytropic |

rc | Recirculation |

s | Shroud |

sf | Skin friction |

spl | Splitter |

TE | Trailing edg |

th | Throat |

tt | Total to total |

u | Circumferential component |

vcv | Volute circumferential velocity |

vld | Vaneless diffuser |

vmv | Volute meridional velocity |

vsf | Volute skin friction |

Superscripts | |

* | Sonic condition/scaling factor |

- | Average |

## References

- National Oceanic and Atmospheric Administration. Available online: http://www.noaa.gov/ (accessed on 28 October 2021).
- Climate Change: Vital Signs of the Planet. Available online: https://climate.nasa.gov/ (accessed on 28 October 2021).
- Climatic Research Unit-Groups and Centres-UEA. Available online: https://www.uea.ac.uk/groups-and-centres/climatic-research-unit (accessed on 28 October 2021).
- IPCC. Climate Change Widespread, Rapid, and Intensifying, IPCC. Available online: https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/ (accessed on 28 October 2021).
- UNFCCC. The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 21 September 2021).
- Rockström, J.; Gaffney, O.; Rogelj, J.; Meinshausen, M.; Nakicenovic, N.; Schellnhuber, H.J. A Roadmap for Rapid Decarbonization. Science
**2017**, 355, 1269–1271. [Google Scholar] [CrossRef] - De La Peña, L.; Guo, R.; Cao, X.; Ni, X.; Zhang, W. Accelerating the Energy Transition to Achieve Carbon Neutrality. Resour. Conserv. Recycl.
**2022**, 177, 105957. [Google Scholar] [CrossRef] - Ram, M.; Osorio-Aravena, J.C.; Aghahosseini, A.; Bogdanov, D.; Breyer, C. Job Creation during a Climate Compliant Global Energy Transition across the Power, Heat, Transport, and Desalination Sectors by 2050. Energy
**2022**, 238, 121690. [Google Scholar] [CrossRef] - Giovannelli, A. Development of Turbomachines for Renewable Energy Systems and Energy-Saving Applications. Energy Procedia
**2018**, 153, 10–15. [Google Scholar] [CrossRef] - Fattouh, B.; Poudineh, R.; West, R. The Rise of Renewables and Energy Transition: What Adaptation Strategy Exists for Oil Companies and Oil-Exporting Countries? Energy Transit.
**2019**, 3, 45–58. [Google Scholar] [CrossRef] - Mahmoud-Jouini, S.B.; Midler, C.; Garel, G. Time-to-Market vs. Time-to-Delivery: Managing Speed in Engineering, Procurement and Construction Projects. Int. J. Proj. Manag.
**2004**, 22, 359–367. [Google Scholar] [CrossRef] - Came, P.M.; Robinson, C.J. Centrifugal Compressor Design. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
**1998**, 213, 139–155. [Google Scholar] [CrossRef] - Krain, H. Review of Centrifugal Compressor’s Application and Development. J. Turbomach.
**2005**, 127, 25–34. [Google Scholar] [CrossRef] - Violette, M.; Cyril, P.; Jürg, S. Data-Driven Predesign Tool for Small-Scale Centrifugal Compressor in Refrigeration. J. Eng. Gas Turbines Power
**2018**, 140, 121011. [Google Scholar] [CrossRef] - Casey, M.; Robinson, C. A Method to Estimate the Performance Map of a Centrifugal Compressor Stage. J. Turbomach.
**2013**, 135, 021034. [Google Scholar] [CrossRef] - Al-Busaidi, W.; Pilidis, P. A New Method for Reliable Performance Prediction of Multi-Stage Industrial Centrifugal Compressors Based on Stage Stacking Technique: Part I–Existing Models Evaluation. Appl. Therm. Eng.
**2016**, 98, 10–28. [Google Scholar] [CrossRef] - Japikse, D.; Baines, N.C. Introduction to Turbomachinery; Concepts Eti Norwich: Norwich, VT, USA, 1994. [Google Scholar]
- Dean, R.C., Jr.; Senoo, Y. Rotating Wakes in Vaneless Diffusers. J. Basic Eng.
**1960**, 82, 563–570. [Google Scholar] [CrossRef] - Japikse, D. Assessment of Single-and Two-Zone Modeling of Centrifugal Compressors, Studies in Component Performance: Part 3. In Proceedings of the Turbo Expo: Power for Land, Sea and Air, Houston, TX, USA, 18–21 March 1985; Volume 79382, p. 001. [Google Scholar]
- Harley, P.; Spence, S.; Filsinger, D.; Dietrich, M.; Early, J. An Evaluation of 1D Design Methods for the Off-Design Performance Prediction of Automotive Turbocharger Compressors. In Proceedings of the Turbo Expo 2012, Copenhagen, Denmark, 11–15 June 2012; American Society of Mechanical Engineers. Volume 44748, pp. 915–925. [Google Scholar]
- Casey, M.; Robinson, C. A New Streamline Curvature Throughflow Method for Radial Turbomachinery. J. Turbomach.
**2010**, 132, 031021. [Google Scholar] [CrossRef] - Eckardt, D. Detailed Flow Investigations within a High-Speed Centrifugal Compressor Impeller. J. Fluids Eng.
**1976**, 98, 390–399. [Google Scholar] [CrossRef] - Cravero, C.; Leutcha, P.J.; Marsano, D. Simulation and Modeling of Ported Shroud Effects on Radial Compressor Stage Stability Limits. Energies
**2022**, 15, 2571. [Google Scholar] [CrossRef] - Lüdtke, K.H. Process Centrifugal Compressors: Basics, Function, Operation, Design, Application; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Vidil, R.; Marvillet, C. The Innovation Process in the Energy Field. Energy
**2005**, 30, 1233–1246. [Google Scholar] [CrossRef] - Hazby, H.; Casey, M.; Březina, L. Effect of Leakage Flows on the Performance of a Family of Inline Centrifugal Compressors. J. Turbomach.
**2019**, 141, 091006. [Google Scholar] [CrossRef] - Edwards-Schachter, M. The Nature and Variety of Innovation. Int. J. Innov. Stud.
**2018**, 2, 65–79. [Google Scholar] [CrossRef] - Hazby, H.; Casey, M.; Robinson, C.; Spataro, R.; Lunacek, O. The Design of a Family of Process Compressor Stages. In Proceedings of the 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, Stockholm, Sweden, 3–7 April 2017. [Google Scholar]
- Bygrave, J.; Villanueva, A.; Enos, R.; Saladino, A.; Serrino, D.; Prosser, W. Upgrading the Performance of a Centrifugal Barrel Compressor Family. In Proceedings of the Turbo Expo: Power for Land, Sea and Air, Glasgow, UK, 14–18 June 2010; Volume 44007, pp. 789–802. [Google Scholar]
- Casey, M.; Gersbach, F.; Robinson, C. An Optimization Technique for Radial Compressor Impellers. In Proceedings of the Turbo Expo: Power for Land, Sea and Air, Berlin, Germany, 9–13 June 2008; Volume 43161, pp. 2401–2411. [Google Scholar]
- Li, P.-Y.; Gu, C.-W.; Song, Y. A New Optimization Method for Centrifugal Compressors Based on 1D Calculations and Analyses. Energies
**2015**, 8, 4317–4334. [Google Scholar] [CrossRef] - Khan, Z.H.; Alin, T.S.; Hussain, M.A. Price Prediction of Share Market Using Artificial Neural Network (ANN). Int. J. Comput. Appl.
**2011**, 22, 42–47. [Google Scholar] - Checcucci, M.; Sazzini, F.; Marconcini, M.; Arnone, A.; Coneri, M.; De Franco, L.; Toselli, M. Assessment of a Neural-Network-Based Optimization Tool: A Low Specific-Speed Impeller Application. Int. J. Rotating Mach.
**2011**, 2011, 817547. [Google Scholar] [CrossRef] - Ronald, H. Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis; American Society of Mechanical Engineers Press: New York, NY, USA, 2000. [Google Scholar]
- Oh, H.W.; Yoon, E.S.; Chung, M.K. An Optimum Set of Loss Models for Performance Prediction of Centrifugal Compressors. Proc. Inst. Mech. Eng. Part A J. Power Energy
**1997**, 211, 331–338. [Google Scholar] [CrossRef] - Galvas, M.R. Fortran Program for Predicting Off-Design Performance of Centrifugal Compressors; National Aeronautics and Space Administration: Washington, DC, USA, 1973; Volume 7487. [Google Scholar]
- Khoshkalam, N.; Mojaddam, M.; Pullen, K.R. Characterization of the Performance of a Turbocharger Centrifugal Compressor by Component Loss Contributions. Energies
**2019**, 12, 2711. [Google Scholar] [CrossRef] - Velásquez, E.I.G. Determination of a Suitable Set of Loss Models for Centrifugal Compressor Performance Prediction. Chin. J. Aeronaut.
**2017**, 30, 1644–1650. [Google Scholar] [CrossRef] - Zhang, C.; Dong, X.; Liu, X.; Sun, Z.; Wu, S.; Gao, Q.; Tan, C. A Method to Select Loss Correlations for Centrifugal Compressor Performance Prediction. Aerosp. Sci. Technol.
**2019**, 93, 105335. [Google Scholar] [CrossRef] - Sundström, E.; Kerres, B.; Sanz, S.; Mihăescu, M. On the Assessment of Centrifugal Compressor Performance Parameters by Theoretical and Computational Models. In Proceedings of the Turbo Expo: Power for Land, Sea and Air, Charlotte, NC, USA; American Society of Mechanical Engineers: Charlotte, NC, USA, 2017; Volume 50800, p. 02. [Google Scholar]
- Kus, B.; Nekså, P. Development of One-Dimensional Model for Initial Design and Evaluation of Oil-Free Co2 Turbo-Compressor. Int. J. Refrig.
**2013**, 36, 2079–2090. [Google Scholar] [CrossRef] - Ameli, A.; Afzalifar, A.; Turunen-Saaresti, T.; Backman, J. Centrifugal Compressor Design for Near-Critical Point Applications. J. Eng. Gas Turbines Power
**2019**, 141, 031016. [Google Scholar] [CrossRef] - Romei, A.; Gaetani, P.; Giostri, A.; Persico, G. The Role of Turbomachinery Performance in the Optimization of Supercritical Carbon Dioxide Power Systems. J. Turbomach.-Trans. ASME
**2020**, 142, 071001. [Google Scholar] [CrossRef] - Mei, Z.; Cao, T.; Hwang, Y. 1D Design and Optimization of a Micro-Centrifugal Compressor for an Air Conditioner Using R600a. In Proceedings of the 25th International Compressor Engineering Conference, Purdue, IN, USA, 24–28 May 2021. [Google Scholar]
- Xia, W.; Zhang, Y.; Yu, H.; Han, Z.; Dai, Y. Aerodynamic Design and Multi-Dimensional Performance Optimization of Supercritical CO
_{2}Centrifugal Compressor. Energy Convers. Manag.**2021**, 248, 114810. [Google Scholar] [CrossRef] - Wang, J.; Guo, Y.; Zhou, K.; Xia, J.; Li, Y.; Zhao, P.; Dai, Y. Design and Performance Analysis of Compressor and Turbine in Supercritical CO
_{2}Power Cycle Based on System-Component Coupled Optimization. Energy Convers. Manag.**2020**, 221, 113179. [Google Scholar] [CrossRef] - Bourabia, L.; Abed, C.B.; Cerdoun, M.; Khalfallah, S.; Deligant, M.; Khelladi, S.; Chettibi, T. Aerodynamic Preliminary Design Optimization of a Centrifugal Compressor Turbocharger Based on One-Dimensional Mean-Line Model. Eng. Comput.
**2021**, 38, 3438–3469. [Google Scholar] [CrossRef] - Du, Y.; Yang, C.; Wang, H.; Hu, C. One-Dimensional Optimisation Design and off-Design Operation Strategy of Centrifugal Compressor for Supercritical Carbon Dioxide Brayton Cycle. Appl. Therm. Eng.
**2021**, 196, 117318. [Google Scholar] [CrossRef] - Massoudi, S.; Picard, C.; Schiffmann, J. Robust Design Using Multiobjective Optimisation and Artificial Neural Networks with Application to a Heat Pump Radial Compressor. Des. Sci.
**2022**, 8, E1. [Google Scholar] [CrossRef] - Konstantinov, S.V.; Diveev, A.I.; Balandina, G.I.; Baryshnikov, A.A. Comparative Research of Random Search Algorithms and Evolutionary Algorithms for the Optimal Control Problem of the Mobile Robot. Procedia Comput. Sci.
**2019**, 150, 462–470. [Google Scholar] [CrossRef] - Harley, P.X.L. Improved Meanline Modelling of Centrifugal Compressors for Automotive Turbochargers. Ph.D. Thesis, Queen’s University Belfast, Belfast, UK, 2014. [Google Scholar]
- Amirante, R.; De Bellis, F.; Distaso, E.; Tamburrano, P. An Explicit, Non-Iterative, Single Equation Formulation for an Accurate One Dimensional Estimation of Vaneless Radial Diffusers in Turbomachines. J. Mech.
**2015**, 31, 113–122. [Google Scholar] [CrossRef] - Qiu, X.; Japikse, D.; Zhao, J.; Anderson, M.R. Analysis and Validation of a Unified Slip Factor Model for Impellers at Design and Off-Design Conditions. J. Turbomach.
**2011**, 133, 041018. [Google Scholar] [CrossRef] - Jansen, W. A Method for Calculating the Flow in a Centrifugal Impeller When Entropy Gradient Are Present. Inst. Mech. Eng. Intern. Aerodyn.
**1970**, 133–146. [Google Scholar] - Stuart, C.; Spence, S.; Kim, S.I.; Filsinger, D.; Starke, A. A 1-D Vaneless Diffuser Model Accounting for the Effects of Spanwise Flow Stratification. In Proceedings of the International Gas Turbine Congress (IGTC), Tokyo, Japan, 15–20 November 2015; pp. 15–20. [Google Scholar]
- Stanitz, J.D. One-Dimensional Compressible Flow in Vaneless Diffusers of Radial-and Mixed-Flow Centrifugal Compressors, Including Effects of Friction, Heat Transfer and Area Change; University of North Texas Libraries: Denton, TX, USA, 1952. [Google Scholar]
- Hazby, H.R.; O’Donoghue, R.; Robinson, C.J. Design and Modelling of Circular Volutes for Centrifugal Compressors. In Proceedings of the 14th International Conference on Turbochargers and Turbocharging, London, UK, 11–12 May 2021; pp. 289–301. [Google Scholar]
- Weber, C.R.; Koronowski, M.E. Meanline Performance Prediction of Volutes in Centrifugal Compressors. In Proceedings of the Turbo Expo: Power for Land Sea, and Air; American Society of Mechanical Engineers, Dusseldorf, Germany, 8–12 June 1986; Volume 79283, p. 001. [Google Scholar]
- Meroni, A.; Zühlsdorf, B.; Elmegaard, B.; Haglind, F. Design of Centrifugal Compressors for Heat Pump Systems. Appl. Energy
**2018**, 232, 139–156. [Google Scholar] [CrossRef] - Conrad, O.; Raif, K.; Wessels, M. The Calculation of Performance Maps for Centrifugal Compressors with Vane-Island Diffusers. Perform. Predict. Centrif. Pumps Compress.
**1979**, 135–147. [Google Scholar] - Coppage, J.E.; Dallenbach, F. Study of Supersonic Radial Compressors for Refrigeration and Pressurization Systems; Garrett Corp: Los Angeles, CA, USA, 1956. [Google Scholar]
- Johnston, J.P.; Dean, R.C., Jr. Losses in Vaneless Diffusers of Centrifugal Compressors and Pumps: Analysis, Experiment, and Design. ASME J. Eng. Power
**1966**, 88, 49–60. [Google Scholar] [CrossRef] - Oh, H.W.; Yoon, E.S.; Chung, M.K. Systematic Two-Zone Modelling for Performance Prediction of Centrifugal Compressors. Proc. Inst. Mech. Eng. Part A J. Power Energy
**2002**, 216, 75–87. [Google Scholar] [CrossRef] - Daily, J.W.; Nece, R.E. Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks. J. Basic Eng.
**1960**, 82, 217–230. [Google Scholar] [CrossRef] - Arnone, A. Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method. J. Turbomach.
**1994**, 116, 435–445. [Google Scholar] [CrossRef] - Bicchi, M.; Pinelli, L.; Marconcini, M.; Gaetani, P.; Persico, G. Numerical Study of a High-Pressure Turbine Stage with Inlet Distortions. In Proceedings of the AIP Conference Proceedings, Modena, Italy, 11–13 September 2019; Volume 2191, p. 020020. [Google Scholar]
- Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries: La Canada, CA, USA, 1998; Volume 2. [Google Scholar]
- Giovannini, M.; Marconcini, M.; Arnone, A.; Dominguez, A. A Hybrid Parallelization Strategy of a Cfd Code for Turbomachinery Applications. In Proceedings of the 11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics; European Turbomachinery Society, Madrid, Spain; 2015. [Google Scholar]
- Harley, P.; Spence, S.; Filsinger, D.; Dietrich, M.; Early, J. Assessing 1D Loss Models for the Off-Design Performance Prediction of Automotive Turbocharger Compressors. In Proceedings of the Turbo Expo: Power for Land, Sea and Air; American Society of Mechanical Engineers, San Antonio, TX, USA, 3–7 June 2013; Volume 55249, p. 06. [Google Scholar]
- Shouyi, S.; Zhufeng, Y.; Lei, L.; Mengchuang, Z.; Weizhu, Y. Preliminary Design of Centrifugal Compressor Using Multidisciplinary Optimization Method. Mech. Ind.
**2019**, 20, 628. [Google Scholar] [CrossRef] - Cantini, A.; Peron, M.; De Carlo, F.; Sgarbossa, F. A Decision Support System for Configuring Spare Parts Supply Chains Considering Different Manufacturing Technologies. Int. J. Prod. Res.
**2022**, 1–21. [Google Scholar] [CrossRef] - Sobol’, I.M.; Asotsky, D.; Kreinin, A.; Kucherenko, S. Construction and Comparison of High-Dimensional Sobol’generators. Wilmott
**2011**, 2011, 64–79. [Google Scholar] [CrossRef] - Burhenne, S.; Jacob, D.; Henze, G.P. Sampling Based on Sobol’sequences for Monte Carlo Techniques Applied to Building Simulations. Proc. Int. Conf. Build. Simulat.
**2011**, 1816–1823. [Google Scholar] - Riccietti, E.; Bellucci, J.; Checcucci, M.; Marconcini, M.; Arnone, A. Support Vector Machine Classification Applied to the Parametric Design of Centrifugal Pumps. Eng. Optim.
**2018**, 50, 1304–1324. [Google Scholar] [CrossRef] - Zabinsky, Z.B. Random Search Algorithms; Department of Industrial and Systems Engineering, University of Washington: Washington, MA, USA, 2009. [Google Scholar]

**Figure 1.**Centrifugal compressor stage (

**a**) and its thermodynamic transformation on the h-s plane (

**b**).

**Figure 3.**Comparison between 1D model predictions, CFD, and experimental data (with error bars) in terms of ${\beta}_{tt}$ at the impeller (

**section 2**), diffuser (

**section 3**), and volute (

**section 4**) outlet.

**Figure 4.**Comparison between 1D model predictions, CFD, and experimental data (with error bars) in terms of ${\eta}_{p}$ at the impeller (

**section 2**), diffuser (

**section 3**), and volute (

**section 4**) outlet.

**Figure 5.**Comparison between 1D model predictions, CFD, and experimental data (with error bars) in terms of $\tau $ at the impeller outlet (

**section 2**).

**Figure 6.**Comparison between 1D model predictions, CFD, and experimental data (with error bars) in terms of $\psi $ at the impeller (

**section 2**), diffuser (

**section 3**), and volute (

**section 4**) outlet.

**Figure 7.**Loss source breakdown evaluated with the 1D model (

**left**) and CFD (

**right**) for the low flow stage.

**Figure 8.**Loss source breakdown evaluated with the 1D model (

**left**) and CFD (

**right**) for the medium flow stage.

**Figure 9.**Loss source breakdown evaluated with the 1D model (

**left**) and CFD (

**right**) for the high flow stage.

**Figure 10.**ANOVA main effect plot of ${\eta}_{p}$ for low (

**blue**), medium (

**gray**), and high (

**black**) flow stage.

**Figure 11.**ANOVA main effect plot of $\tau $ for low (

**blue**), medium (

**gray**), and high (

**black**) flow stage.

**Figure 12.**Comparison of 1D prediction (

**blue dots**) and ANN forecast (

**red dots**) under stall, design, and choke conditions for the low flow designed impeller.

**Figure 13.**Comparison of 1D prediction (

**blue dots**) and ANN forecast (

**red dots**) under stall, design, and choke conditions for the medium flow designed impeller.

**Figure 14.**Comparison of 1D prediction (

**blue dots**) and ANN forecast (

**red dots**) under stall, design, and choke conditions for the high flow designed impeller.

**Figure 15.**New geometries investigated with ANN (

**blue dots**) in stall, design, and choke conditions and Pareto front (

**red circles**) for the low flow designed impeller.

**Figure 16.**New geometries investigated with ANN (

**blue dots**) in stall, design, and choke conditions and Pareto front (

**red circles**) for the medium flow designed impeller.

**Figure 17.**New geometries investigated with ANN (

**blue dots**) in stall, design, and choke conditions and Pareto front (

**red circles**) for the high flow designed impeller.

**Figure 18.**Comparison between old LNG and new EC geometries evaluated with the 1D model and CFD in terms of ${\beta}_{tt}$ at the impeller (

**section 2**), diffuser (

**section 3**), and volute (

**section 4**) outlet.

**Figure 19.**Comparison between old LNG and new EC geometries evaluated with the 1D model and CFD in terms of ${\eta}_{p}$ at the impeller (

**section 2**), diffuser (

**section 3**), and volute (

**section 4**) outlet.

**Figure 20.**Comparison between old LNG and new EC geometries evaluated with the 1D model and CFD in terms of τ at the impeller (

**section 2**) outlet.

**Figure 21.**Comparison between old LNG and new EC geometries evaluated with the 1D model and CFD in terms of $\psi $ at the impeller (

**section 2**), diffuser (

**section 3**), and volute (

**section 4**) outlet.

Component | Loss Source | Loss Correlation * | Refs. |
---|---|---|---|

Impeller(Internal losses) | Incidence | $\Delta {h}_{in}={f}_{inc}{w}_{1}^{2}{\mathrm{sin}}^{2}\left({\beta}_{1}-{\beta}_{1,bl}\right)={f}_{inc}\frac{{w}_{u1}^{2}}{2}$ $\mathrm{with}{f}_{inc}=0.5\xf70.7$ | [60] |

Blade-loading | $\Delta {h}_{bld}=0.05{D}_{f}^{2}{U}_{2}^{2}$ with ${D}_{f}=1-\frac{{w}_{2}}{{w}_{s1}}+\frac{0.75\left[\left({U}_{2}{c}_{u2}-{U}_{1}{c}_{1}\right)/{U}_{2}^{2}\right]}{\frac{{w}_{s1}}{{w}_{2}}\left[\left(\frac{Z}{\pi}\right)\left(1-\frac{{D}_{s1}}{{D}_{2}}\right)+2\frac{{D}_{s1}}{{D}_{2}}\right]}$ | [61] | |

Mixing | $\Delta {h}_{mix}=0.5\frac{{c}_{2}^{2}}{{\mathrm{cos}}^{2}{\alpha}_{2}}{\left(\frac{1-\epsilon -\frac{{b}_{3}}{{b}_{2}}}{1-\epsilon}\right)}^{2}$ | [62,63] | |

Skin-friction | $\Delta {h}_{sf}=\frac{2{c}_{f}{L}_{bl}}{{D}_{h}}{\overline{w}}^{2}$$\mathrm{with}\overline{w}=\frac{2{w}_{2}+{w}_{s1}+{w}_{h1}}{4}$ | [54] | |

Choke | $\Delta {h}_{ch}=0.5\left(0.05X+{X}^{7}\right){w}_{1}^{2}$$\mathrm{with}X=11-10{c}_{r}{A}_{th}/{A}^{*}Z$ | [34] | |

Hub-to-shroud distortion | $\Delta {h}_{hs}=\frac{1}{12}{\left(\frac{{\gamma}_{TE}-{\gamma}_{LE}}{L}\right)}^{2}{\left(\frac{{w}_{1rms}+{w}_{2}}{2}\right)}^{2}{\left(\frac{{b}_{1}+{b}_{2}}{2}\right)}^{2}$ | [34] | |

Impeller(External losses) | Disc-friction | $\Delta {h}_{df}={f}_{df}\frac{\overline{\rho}{r}_{2}^{2}{U}_{2}^{3}}{4\dot{m}}$$\mathrm{with}{f}_{df}=f\left(\frac{{U}_{2}{r}_{2}}{{v}_{2}}\right)$ | [64] |

Leakage | $\Delta {h}_{lk}=\frac{{\dot{m}}_{cl}{U}_{cl}{U}_{2}}{2\dot{m}}$ | [34] | |

Recirculation | $\Delta {h}_{rc}=8\xb7{10}^{-5}\mathrm{sinh}\left(3.5{\alpha}_{2}^{3}\right){D}_{f}^{2}{U}_{2}^{2}$ | [35] | |

Diffuser | Vaneless diffuser | $\Delta {h}_{vld}={C}_{p}{T}_{02}\left[{\left({P}_{3}/{P}_{03}\right)}^{\frac{\gamma -1}{\gamma}}-{\left({P}_{3}/{P}_{02}\right)}^{\frac{\gamma -1}{\gamma}}\right]$ | [56] |

Volute | Circumferential velocity | $\Delta {h}_{vcv}=0.25\left({\mathrm{c}}_{u3}^{2}-{\mathrm{c}}_{4}^{2}\right)$$\mathrm{if}{\mathrm{c}}_{u3}{\mathrm{r}}_{3}/{\mathrm{c}}_{4}{\mathrm{r}}_{4}\ge 1$ $\mathrm{else}\Delta {h}_{vcv}=0.5{\left({c}_{u3}-{\mathrm{c}}_{4}\right)}^{2}$ | [57,58] |

Meridional velocity | $\Delta {h}_{vmv}=0.5{c}_{m3}^{2}$ | [57,58] | |

Skin-friction | $\Delta {h}_{vsf}=0.5{c}_{f}L{\overline{{c}_{u}}}^{2}/{D}_{hyd}$ | [57,58] | |

Exit-cone | $\Delta {h}_{e}={k}_{e}{\left({c}_{4}-{c}_{5}\right)}^{2}/2g$ | [57,58] |

Grid | No. of Elements | Polytropic Efficiency | Work Coefficient | ||
---|---|---|---|---|---|

Value | Error with G5 (%) | Value | Error with G5 (%) | ||

G1 | 2.0 million | 0.989 | −1.1 | 1.008 | 0.8 |

G2 | 2.5 million | 0.994 | −0.6 | 1.005 | 0.5 |

G3 | 3.0 million | 0.997 | −0.3 | 1.002 | 0.2 |

G4 | 3.5 million | 1.000 | 0.0 | 1.000 | 0.0 |

G5 | 4.0 million | 1.000 | - | 1.000 | - |

Numerical Setup | |
---|---|

Type of analysis | RANS with adiabatic walls |

Type of grid | H-type |

No. of Elements | 3.5 million |

Discretization of convective fluxes | 2nd order TVD-MUSCL with Roe’s upwind scheme |

Discretization of viscous fluxes | Central difference scheme |

Turbulence closure | Wilcox’s k-ω model |

Parallelization | Hybrid OpenMP/MPI architecture |

Wall treatment | Wall resolution without wall functions |

Near wall grid refinement | First element of 2.8 × 10^{−5} mm (y+ ≤ 1) |

**Table 4.**Geometric parameters adopted as independent variables in the ANOVA and their range of variation.

Parameter | Range of Variation (%) | ANOVA Admissible Value (%) |
---|---|---|

$\mathrm{Impeller}\mathrm{inlet}\mathrm{hub}\mathrm{diameter}{\mathit{D}}_{1\mathit{h}}$ | Constant | - |

$\mathrm{Impeller}\mathrm{inlet}\mathrm{shroud}\mathrm{diameter}{\mathit{D}}_{1\mathit{s}}$ | (−5.0; 5.0) | −5.0; 0.0; 5.0 |

$\mathrm{Blade}\mathrm{thickness}\mathit{t}$ | (−19.0; 19.0) | −19.0; 0.0; 19.0 |

$\mathrm{Outlet}\mathrm{impeller}\mathrm{diameter}{\mathit{D}}_{2}$ | Constant | - |

$\mathrm{Outlet}\mathrm{impeller}\mathrm{width}{\mathit{b}}_{2}$ | (−16.0; 16.0) | −16.0; 0.0; 16.0 |

$\mathrm{Hub}\mathrm{inlet}\mathrm{blade}\mathrm{angle}{\mathit{\beta}}_{1\mathit{h}}$ | (−7.0; 7.0) | −7.0; 0.0; 7.0 |

$\mathrm{Shroud}\mathrm{inlet}\mathrm{blade}\mathrm{angle}{\mathit{\beta}}_{1\mathit{s}}$ | (−6.0; 6.0) | −6.0; 0.0; 6.0 |

$\mathrm{Outlet}\mathrm{blade}\mathrm{angle}{\mathit{\beta}}_{2}$ | (−8.0; 8.0) | −8.0; 0.0; 8.0 |

$\mathrm{LE}\mathrm{slope}{\mathit{\gamma}}_{\mathit{L}\mathit{E}}$ | (−14.0; 14.0) | −14.0; 0.0; 14.0 |

$\mathrm{Diffuser}\mathrm{pinch}{\mathit{b}}_{3}/{\mathit{b}}_{2}$ | (−6.0; 6.0) | −6.0; 0.0; 6.0 |

**Table 5.**ANN absolute error in prediction of polytropic efficiency ${\u03f5}_{{\eta}_{p}}$ and work coefficient ${\u03f5}_{\tau}$.

Stall | Design | Choke | ||||
---|---|---|---|---|---|---|

${\mathsf{\u03f5}}_{{\mathsf{\eta}}_{\mathit{p}}}$ | ${\mathsf{\u03f5}}_{\mathsf{\tau}}$ | ${\mathsf{\u03f5}}_{{\mathsf{\eta}}_{\mathit{p}}}$ | ${\mathsf{\u03f5}}_{\mathsf{\tau}}$ | ${\mathsf{\u03f5}}_{{\mathsf{\eta}}_{\mathit{p}}}$ | ${\mathsf{\u03f5}}_{\mathsf{\tau}}$ | |

Low flow stage | 0.1% | 0.2% | 0.2% | 0.2% | 0.8% | 0.3% |

Medium flow stage | 0.2% | 0.1% | 0.2% | 0.1% | 0.5% | 0.3% |

High flow stage | 0.2% | 0.1% | 0.2% | 0.2% | 1.0% | 0.3% |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bicchi, M.; Biliotti, D.; Marconcini, M.; Toni, L.; Cangioli, F.; Arnone, A.
An AI-Based Fast Design Method for New Centrifugal Compressor Families. *Machines* **2022**, *10*, 458.
https://doi.org/10.3390/machines10060458

**AMA Style**

Bicchi M, Biliotti D, Marconcini M, Toni L, Cangioli F, Arnone A.
An AI-Based Fast Design Method for New Centrifugal Compressor Families. *Machines*. 2022; 10(6):458.
https://doi.org/10.3390/machines10060458

**Chicago/Turabian Style**

Bicchi, Marco, Davide Biliotti, Michele Marconcini, Lorenzo Toni, Francesco Cangioli, and Andrea Arnone.
2022. "An AI-Based Fast Design Method for New Centrifugal Compressor Families" *Machines* 10, no. 6: 458.
https://doi.org/10.3390/machines10060458