Impacts of SiC-MOSFET Gate Oxide Degradation on Three-Phase Voltage and Current Source Inverters
Abstract
:1. Introduction
2. Effects of Threshold Voltage Variation on On-Resistance, Turn-On Delay and Turn-Off Delay
2.1. Gate Oxide Degradation
2.2. On-Resistance Variation Caused by Threshold Voltage
2.3. Turn-On Delay Variation Caused by Threshhold Voltage
2.4. Turn-Off Delay Caused by Threshold Voltage
3. High Electric Field Stress
4. Investigation of Threshold Voltage and On-Resistance under High Electric Field Stress
4.1. Threshold Voltage Variation under HEF Stress
4.2. On-Resistance Variation under HEF Stress
5. Turn-On and Turn-Off Delay under High Electric Field Stress
5.1. Turn-On Delay Variation under HEF Stress
5.2. Turn-Off Delay Variation under HEF Stress
6. Performance of Voltage and Current Source Inverter with Duty Error Changes
6.1. Performance Variation of Grid-Connected Voltage Source Inverter with Duty Error Change Due to Gate Oxide Degradation
6.2. Performance Variation of Current Source Inverter with Duty Error Change Due to Gate Oxide Degradation
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, C.; Liu, S.; Li, S.; Ma, Y.; Lu, W.; Huang, J.; Sun, W.; Yang, Z.; Zhu, Y.; Ni, L. Investigation on the Degradation Mechanism for GaN Cascode Device Under Repetitive Hard-Switching Stress. IEEE Trans. Power Electron. 2021, 37, 6009–6017. [Google Scholar] [CrossRef]
- Hazra, S.; Madhusoodhanan, S.; Moghaddam, G.K.; Hatua, K.; Bhattacharya, S. Design considerations and performance evaluation of 1200-V 100-A SiC MOSFET-based two-level voltage source converter. IEEE Trans. Ind. Appl. 2016, 52, 4257–4268. [Google Scholar] [CrossRef]
- Jahns, T.M.; Sarlioglu, B. The incredible shrinking motor drive: Accelerating the transition to integrated motor drives. IEEE Power Electron. Mag. 2020, 7, 18–27. [Google Scholar] [CrossRef]
- Pu, S.; Yang, F.; Vankatalapati, B.T.; Akin, B. Aging mechanisms and accelerated lifetime tests for SiC MOSFETs: An overview. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 1232–1254. [Google Scholar] [CrossRef]
- Ugur, E.; Xu, C.; Yang, F.; Pu, S.; Akin, B. A new complete condition monitoring method for SiC power MOSFETs. IEEE Trans. Ind. Electron. 2021, 68, 1654–1664. [Google Scholar] [CrossRef]
- Luo, H.; Iannuzzo, F.; Baker, N.; Blaabjerg, F.; Li, W.; He, X. Study of current density influence on bond wire degradation rate in SiC MOSFET modules. IEEE J. Emerg. Sel. Topics Power Electron. 2020, 8, 1622–1632. [Google Scholar] [CrossRef]
- Baba, S.; Gieraltowski, A.; Jasinski, M.; Blaabjerg, F.; Bahman, A.S.; Zelechowski, M. Active power cycling test bench for SiC power MOSFETs—Principles, design, and implementation. IEEE Trans. Power Electron. 2021, 36, 2661–2675. [Google Scholar] [CrossRef]
- Farhadi, M.; Yang, F.; Pu, S.; Vankayalapati, B.T.; Akin, B. Temperature-independent gate-oxide degradation monitoring of SiC MOSFETs based on junction capacitances. IEEE Trans. Power Electron. 2021, 36, 8308–8324. [Google Scholar] [CrossRef]
- Lelis, A.J.; Habersat, D.; Green, R.; Ogunniyi, A.; Gurfinkel, M.; Suehle, J.; Goldsman, N. Time Dependence of Bias-Stress-Induced SiC MOSFET Threshold-Voltage Instability Measurements. IEEE Trans. Electron. Devices 2008, 55, 1835–1840. [Google Scholar] [CrossRef]
- Xin, J.; Du, M.; Ouyang, Z.; Wei, K. Online monitoring for threshold voltage of SiC MOSFET considering the coupling impact on BTI and junction temperature. IEEE Trans. Electron. Devices 2021, 68, 1–6. [Google Scholar] [CrossRef]
- Aichinger, T.; Rescher, G.; Pobegen, G. Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs. Microelectron. Rel. 2018, 80, 68–78. [Google Scholar] [CrossRef]
- Ye, X.; Chen, C.; Wang, Y.; Zhai, G.; Vachtsevanos, G.J. Online condition monitoring of power MOSFET gate oxide degradation based on miller platform voltage. IEEE Trans. Power Electron. 2017, 32, 4776–4784. [Google Scholar] [CrossRef]
- Jensen, W.R.; Foster, S.N. Online detection of MOSFET gate oxide degradation in a three-phase inverter-drive application. IEEE Trans. Transp. Electrif. 2021, 7, 50–57. [Google Scholar] [CrossRef]
- Yang, L.; Castellazzi, A. High temperature gate-bias and reverse-bias tests on SiC MOSFETs. Microelecton. Rel. 2013, 53, 1771–1773. [Google Scholar] [CrossRef]
- Gonzalez, J.O.; Wu, R.; Jahdi, S.; Alatise, O. Performance and reliability review of 650 V and 900 V silicon and SiC devices: MOSFETs, cascode JFETs and IGBTs. IEEE Trans. Ind. Electron. 2020, 67, 7375–7385. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.; Sun, P.; Wang, K.; Luo, Q.; Du, X. Online Gate-Oxide Degradation Monitoring of Planar SiC MOSFETs Based on Gate Charge Time. IEEE Trans. Power Electron. 2022, 37, 7333–7343. [Google Scholar] [CrossRef]
- Karki, U.; Gonzalez-Santini, N.S.; Peng, F.Z. Effect of gate-oxide degradation on electrical parameters of silicon carbide MOSFETs. IEEE Trans. Electron. Devices 2020, 67, 2544–2552. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, X.; Zhang, J.; Wu, X.; Zhang, Y.; Wei, C. Modeling and implementation of optimal asymmetric variable dead-time setting for SiC MOSFET-based three-phase two-level inverters. IEEE Trans. Power Electron. 2019, 34, 11645–11660. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Z.; Xu, Y.; Xiao, H.; Li, Y. Optimal overlap-time distribution of space vector modulation for current-source rectifier. IEEE Trans. Ind. Electron. 2021, 68, 4586–4597. [Google Scholar] [CrossRef]
- Karki, U.; Peng, F.Z. Effect of gate oxide degradation on electrical parameters of power MOSFETs. IEEE Trans. Power Electron. 2018, 33, 10764–10773. [Google Scholar] [CrossRef]
- Yang, F.; Pu, S.; Xu, C.; Akin, B. Turn-on delay based real-time junction temperature measurement for SiC MOSFETs with aging compensation. IEEE Trans. Power Electron. 2021, 36, 1280–1294. [Google Scholar] [CrossRef]
- Zhang, Z.; Dyer, J.; Wu, X.; Wang, F.; Costinett, D.; Tolbert, L.M.; Blalock, B.J. Online junction temperature monitoring using intelligent gate drive for SiC power devices. IEEE Trans. Power Electron. 2019, 34, 7922–7932. [Google Scholar] [CrossRef]
- Wen, B.; Boroyevich, D.; Burgos, R.; Mattavelli, P.; Shen, Z. Analysis of D-Q small-signal impedance of grid-tied inverters. IEEE Trans. Power Electron. 2016, 31, 675–687. [Google Scholar] [CrossRef]
- Wu, B.; Narimani, M. High-Power Converters and AC Drives; IEEE Press: Piscataway, NJ, USA, 2006. [Google Scholar]
- Blasko, V. Analysis of a hybrid PWM based on modified space-vector and triangle-comparison method. IEEE Trans. Ind. Appl. 1997, 33, 756–764. [Google Scholar] [CrossRef]
- Shen, Z.; Jiang, D. Dead-time effect compensation method based on current ripple prediction for voltage-source inverters. IEEE Trans. Power Electron. 2019, 34, 971–983. [Google Scholar] [CrossRef]
- Kim, J.; Kwak, S. Direct power control method with minimum reactive power reference for three-phase AC-to-DC matrix rectifiers using space vector modulation. IEEE Access 2019, 7, 67515–67525. [Google Scholar] [CrossRef]
Reference | Types of HEF | Stationary Properties | Transient Properties | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PHEF | NHEF | Vth | Ron | Cgs, Cgd | Vsd | Vm | Tm | Tgc | Tdon | Tdoff | |
[8] | O | O | O | O | O | X | X | X | X | X | X |
[10] | O | O | O | X | X | O | X | X | X | X | X |
[13] | O | X | O | X | X | X | O | X | X | O | X |
[14] | O | O | O | X | X | X | X | X | X | X | X |
[15] | O | O | O | X | X | X | X | X | X | X | X |
[16] | O | O | O | X | X | X | X | X | O | X | X |
[17] | O | X | O | X | X | X | O | O | X | X | X |
Si IGBT | Si MOSFET | Si IGBT (Hybrid) | SiC MOSFET | |||||
---|---|---|---|---|---|---|---|---|
Values | Conditions | Values | Conditions | Values | Conditions | Values | Conditions | |
Part number | RGT60TS65DGC11 | NTHL110N65S3F | IXGH30N60C3C1 | SCT3080AL | ||||
Voltage | 650 V | 650 V | 600 V | 650 V | ||||
Current | 30 A | Tc = 100 °C | 19.5 A | Tc = 100 °C | 30 A | Tc = 110 °C | 21 A | Tc = 100 °C |
Vth | 6 V | Vce = 5 V Ice = 21 mA | 3~5 V | Vgs = Vds Ids = 0.74 mA | 3~5.5 V | Vge = Vce Ice = 0.25 mA | 2.7~5.6 V | Vds = 10 V Ids = 5 mA |
Ron | 55 mΩ | Vge = 15 V, Ice = 30 A | 98 mΩ | Vgs = 10 V, Ids = 15 A | 130 mΩ | Vge = 15 V, Ice = 20 A | 80 mΩ | Vgs = 18 V, Ids = 10 A, Tc = 25 °C |
Tdon | 29 ns | Vcc = 400 V Ice = 30 A Vge = 15 V RG = 10 Ω | 29 ns | Vdd = 400 V Ids = 15 A Vgs = 10 V RG = 4.7 Ω | 17 ns | Vcc = 300 V Ice = 20 A Vge = 15 V RG = 5 Ω | 16 ns | Vdd = 300 V Ids = 10 A Vgs = 18 V/0 V RL = 30 Ω RG = 0 Ω |
Tdoff | 100 ns | 61 ns | 42 ns | 27 ns |
Si IGBT | Si MOSFET | Si IGBT with SiCDiode | SiC MOSFET | ||
---|---|---|---|---|---|
Vth | PHEF | 0% | 0% | 3% | 166% |
NHEF | 0% | −1% | 0% | −69% | |
Ron | PHEF | 1% | 0% | 0% | 100% |
NHEF | −1% | 1% | 1% | −12% | |
Tdon | PHEF | −1% | 0% | 0% | 52% |
NHEF | 0% | 0% | −1% | −13% | |
Tdoff | PHEF | −1% | 1% | 0% | −46% |
NHEF | 1% | 1% | −3% | 24% |
Parameters | Value |
---|---|
Vdc | 700 V |
Cdc | 550 uF |
Lf | 3 mH |
Cf | 20 uF |
Rl | 0.2 Ω |
Ll | 0.15 mH |
Vg | 311.13 V |
Switching frequency | 20 kHz |
Tdp | 0.3 us |
P* | 3 kW |
Q* | 0 |
Parameters | Value |
---|---|
Idc | 10 A |
Rc | 10 Ω |
Lc | 1 mH |
Cf | 20 uF |
Switching frequency | 5 kHz |
Tov | 0.3 us |
Modulation index | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kwak, S.; Choi, S. Impacts of SiC-MOSFET Gate Oxide Degradation on Three-Phase Voltage and Current Source Inverters. Machines 2022, 10, 1194. https://doi.org/10.3390/machines10121194
Kim J, Kwak S, Choi S. Impacts of SiC-MOSFET Gate Oxide Degradation on Three-Phase Voltage and Current Source Inverters. Machines. 2022; 10(12):1194. https://doi.org/10.3390/machines10121194
Chicago/Turabian StyleKim, Jaechang, Sangshin Kwak, and Seungdeog Choi. 2022. "Impacts of SiC-MOSFET Gate Oxide Degradation on Three-Phase Voltage and Current Source Inverters" Machines 10, no. 12: 1194. https://doi.org/10.3390/machines10121194
APA StyleKim, J., Kwak, S., & Choi, S. (2022). Impacts of SiC-MOSFET Gate Oxide Degradation on Three-Phase Voltage and Current Source Inverters. Machines, 10(12), 1194. https://doi.org/10.3390/machines10121194