A Single-Joint Worm-like Robot Inspired by Geomagnetic Navigation
Abstract
:1. Introduction
2. Design and Fabrication
2.1. Design Concept and Structure of the Robot
2.2. Fabrication
3. Force Analysis of the Worm-like Robot
3.1. Motion Process Analysis
3.2. Mechanical Model
4. Results and Discussion
4.1. Characteristics of Bellows
4.2. Characteristics of Movement
4.3. Characteristics of Steering
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cranford, S. Nature MADE: A Simple Guide to Biological Design Rules. Matter 2020, 2, 782–785. [Google Scholar] [CrossRef]
- Yang, W.H.; Zhang, W.Z. A Worm-Inspired Robot Flexibly Steering on Horizontal and Vertical Surfaces. Appl. Sci. 2019, 9, 2168. [Google Scholar] [CrossRef] [Green Version]
- Hemingway, E.G.; O’Reilly, O.M. Continuous models for peristaltic locomotion with application to worms and soft robots. Biomech. Model. Mechanobiol. 2021, 20, 5–30. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Yao, Y.A. A novel serial–parallel hybrid worm-like robot with multi-mode undulatory locomotion. Mech. Mach. Theory 2019, 137, 404–431. [Google Scholar] [CrossRef]
- Kandhari, A.; Wang, Y.F.; Chiel, H.J.; Quinn, R.D.; Daltorio, K.A. An Analysis of Peristaltic Locomotion for Maximizing Velocity or Minimizing Cost of Transport of Earthworm-Like Robots. Soft Robot. 2020, 8, 485–505. [Google Scholar] [CrossRef]
- Du, Z.W.; Fang, H.B.; Xu, J. Snake-worm: A Bi-modal Locomotion Robot. J. Bionic Eng. 2022, 19, 1272–1287. [Google Scholar] [CrossRef]
- Gu, G.Y.; Zhu, J.; Zhu, L.M.; Zhu, X.Y. A survey on dielectric elastomer actuators for soft robots. Bioinspir. Biomim. 2017, 12, 011003. [Google Scholar] [CrossRef]
- Laschi, C.; Mazzolai, B.; Cianchetti, M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 2016, 1, eaah3690. [Google Scholar] [CrossRef] [Green Version]
- Plaut, R.H. Mathematical model of inchworm locomotion. Int. J. Non-Linear Mech. 2015, 76, 56–63. [Google Scholar] [CrossRef]
- Onal, C.D.; Wood, R.J.; Rus, D. An Origami-Inspired Approach to Worm Robots. IEEE/ASME Trans. Mechatron. 2013, 18, 430–438. [Google Scholar] [CrossRef]
- Pfeil, S.; Henke, M.; Katzer, K.; Zimmermann, M.; Gerlach, G. A Worm-Like Biomimetic Crawling Robot Based on Cylindrical Dielectric Elastomer Actuators. Front. Robot. AI 2020, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Rafsanjani, A.; Zhang, Y.R.; Liu, B.Y.; Rubinstein, S.M.; Bertoldi, K. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 2018, 3, eaar7555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, M.S.; Ainla, A.; Yang, D.; Harburg, D.; Whitesides, G.M. A Soft Tube-Climbing Robot. Soft Robot. 2017, 5, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Song, M.Z.; Fang, Y.H.; Zhao, Y.W.; Cao, C.Y. Worm-Inspired Soft Robots Enable Adap Table Pipeline and Tunnel Inspection. Adv. Intell. Syst. 2022, 4, 2100128. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Fan, Y.W.; Yang, P.H.; Cao, T.L.; Liao, O.G. Worm-Like Soft Robot for Complicated Tubular Environments. Soft Robot. 2019, 6, 399–413. [Google Scholar] [CrossRef]
- Ge, J.Z.; Calderon, A.A.; Chang, L.L.; Perez-Arancibia, N.O. An earthworm-inspired friction-controlled soft robot capable of bidirectional locomotion. Bioinspir. Biomim. 2019, 14, 036004. [Google Scholar] [CrossRef]
- Wang, N.F.; Chen, B.C.; Ge, X.D.; Zhang, X.M.; Chen, W. Design, Kinematics, and Application of Axially and Radially Expandable Modular Soft Pneumatic Actuators. J. Mech. Robot. 2021, 13, 021019. [Google Scholar] [CrossRef]
- Wallin, T.J.; Pikul, J.; Shepherd, R.F. 3D printing of soft robotic systems. Nat. Rev. Mater. 2018, 3, 84–100. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, T.; Zhang, T.H.; Zhou, F.H.; Cen, N.; Li, T.F.; Xie, G.M. Global vision-based formation control of soft robotic fish swarm. Soft Robot. 2021, 8, 310–318. [Google Scholar] [CrossRef]
- Gafford, J.; Ding, Y.; Harris, A.; McKenna, T.; Polygerinos, P.; Holland, D.; Moser, A.; Walsh, C. Shape deposition manufacturing of a soft, atraumatic, and deployable surgical grasper. J. Mech. Robot. 2015, 7, 021006. [Google Scholar] [CrossRef]
- Cho, K.J.; Koh, J.S.; Kim, S.; Chu, W.S.; Hong, Y.; Ahn, S.H. Review of manufacturing processes for soft biomimetic robots. Int. J. Precis. Eng. Manuf. 2009, 10, 171–181. [Google Scholar] [CrossRef]
- Niu, H.Q.; Feng, R.Y.; Xie, Y.W.; Jiang, B.W.; Sheng, Y.Z.; Yu, Y.; Baoyin, H.X.; Zeng, X.Y. MagWorm: A Biomimetic Magnet Embedded Worm-Like Soft Robot. Soft Robot. 2021, 8, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.P.; Huang, H.L.; Li, B. Design and Control of a Magnetic Driven Worm-like Micro-robot. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (IEEE ROBIO), Sanya, China, 27–31 December 2021; pp. 1304–1308. [Google Scholar]
- Manwell, T.; Guo, B.J.; Back, J.; Liu, H.B. Bioinspired setae for soft worm robot locomotion. In Proceedings of the 1st IEEE-RAS International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 24–28 April 2018; pp. 54–59. [Google Scholar]
Paraments | Value |
---|---|
Height (l. mm) | 28 |
Radius (r. mm) | 8 |
Thickness (t. mm) | 2 |
Numbers (n) | 7 |
Characteristics | Max Elongation (mm) | Max Expansion (mm) | Max Force (N) | |
---|---|---|---|---|
Parameters | ||||
Simulation | 54.5 | 2.16 | 10.05 | |
Experiment | 53.68 | 1.54 | 8.66 |
Pressure (kpa) | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|
Cardboard | 0.9 | 0.83 | 0.82 | 0.77 | 0.79 | 0.77 | 0.78 | 0.76 | 0.71 | 0.71 | 0.78 |
Acrylic tube | 0.55 | 0.5 | 0.52 | 0.48 | 0.53 | 0.54 | 0.53 | 0.5 | 0.51 | 0.48 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, D.; Zhao, X.; Tang, G.; Wang, J.; Zhao, C.; Li, C.; Wang, Y. A Single-Joint Worm-like Robot Inspired by Geomagnetic Navigation. Machines 2022, 10, 1040. https://doi.org/10.3390/machines10111040
Mei D, Zhao X, Tang G, Wang J, Zhao C, Li C, Wang Y. A Single-Joint Worm-like Robot Inspired by Geomagnetic Navigation. Machines. 2022; 10(11):1040. https://doi.org/10.3390/machines10111040
Chicago/Turabian StyleMei, Dong, Xin Zhao, Gangqiang Tang, Jianfeng Wang, Chun Zhao, Chunxu Li, and Yanjie Wang. 2022. "A Single-Joint Worm-like Robot Inspired by Geomagnetic Navigation" Machines 10, no. 11: 1040. https://doi.org/10.3390/machines10111040
APA StyleMei, D., Zhao, X., Tang, G., Wang, J., Zhao, C., Li, C., & Wang, Y. (2022). A Single-Joint Worm-like Robot Inspired by Geomagnetic Navigation. Machines, 10(11), 1040. https://doi.org/10.3390/machines10111040