Transient Response Sensitivity Analysis of Localized Nonlinear Structure Using Direct Differentiation Method
Abstract
:1. Introduction
- ➢
- The transient response sensitivities of a nonlinear structure are analyzed using the DDM method, in which the algebraic equations of the nonlinear transient response sensitivity are derived.
- ➢
- The effect of parameter perturbation step size in FDM sensitivity, and the effect of the secular term and the time step are investigated using three different nonlinear systems.
2. Basic Theory
2.1. Equation of Motion of Localized Nonlinear Structure
2.2. Nonlinear Transient Response Sensitivity Analysis
2.2.1. Nonlinear Transient Dynamics
2.2.2. Direct Differentiation Method
2.2.3. Implementation Procedure
- (1)
- The nonlinear algebraic equations are solved using the Newton–Raphson iteration scheme, and the transient responses of the structure with local nonlinearity are solved by Newmark-β method in the time range (t1 tfinal);
- (2)
- The derivatives of structural properties are determined with respect to the local nonlinear parameters in Equation (27), ∂t∆q/∂p, DpM, DpC, and DptKe;
- (3)
- For a given initial condition, the initial displacement and velocity sensitivities are zero: 0S = 0Ṡ = 0. By differentiating Equation (7) with respect to parameters under the initial condition:
Algorithm 1. Pseudo-code for initial transient response sensitivity analysis. | |
Procedure Initial Sensitivity (0x, 0ẋ, 0ẍ, M, C, K, 0q, p) | |
Input: initial transient responses, stiffness matrix, damping matrix, stiffness matrix, external force, and design parameters
|
Algorithm 2. Pseudo-code for nonlinear transient response sensitivity analysis using direct differential method. | |
Procedure Transient Sensitivity (0S, 0Ṡ, 0, M, C, K, x, ẋ, ẍ, p) | |
Input: initial transient response sensitivities, mass matrix, damping matrix, stiffness matrix, transient responses, design parameters
|
3. Case Studies
3.1. Duffing Oscillator
3.1.1. Finite Difference Sensitivity Analysis
3.1.2. Asymptotical Sensitivity Analysis
3.1.3. Results Comparison and Discussion
3.2. MDOF Nonlinear System
3.3. Cantilever Beam with Nonlinear Springs
4. Conclusions and Discussion
- (1)
- The DDM-based transient response sensitivities match well with the analytical and numerical sensitivities computed by the PCM and FDM, respectively.
- (2)
- The accurate DDM transient response sensitivity can be obtained based on the accurate nonlinear transient response; the computational efficiency of the response sensitivity is improved using a suitable time step, especially for a long-time dynamic response sensitivity analysis.
- (3)
- The selection of the parameter perturbation step size in FDM sensitivity analysis is affected by the nonlinear behaviors caused by the initial conditions; a large perturbation step size can be selected to improve the accuracy of the transient response sensitivity for a weak nonlinear structure with small initial conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
M | Structural mass matrix |
C | Structural damping matrix |
K | Structural stiffness matrix |
fnl, fnl (p,x,ẋ) | Nonlinear force vector |
q(t) | External force vector |
x, ẋ, ẍ | Structural displacement, velocity, and acceleration vector |
p | Design parameter vector |
fα | Nonlinear restoring force of the αth local nonlinear element |
rα | Relative displacement vector of the αth local nonlinear element |
tα | Transforming matrix of the αth local nonlinear element |
tKnl | Nonlinear stiffness matrix at time t |
tKe | Equivalent stiffness matrix at time t |
, , | Defined displacement, velocity and acceleration sensitivity matrix |
tQe | Equivalent excitation vector at time t |
β, γ | Numerical integrating constants in Newmark-β method |
knl | Nonlinear stiffness coefficient |
cnl | Nonlinear damping coefficient |
ω0 | Natural frequency of linear system |
u0, v0 | Initial displacement and velocity |
m, c, k | Linear mass, damping, and stiffness coefficient |
E | Elastic modulus |
ρ | Density |
μ | Poisson’s ratio |
a1, a2 | Coefficients of proportional damping |
⊗ | Kronecker tensor produce |
Dp (*) | Partial differential of matrix (*) with respect to design parameter p |
References
- Qian, G.; Mahdi, A. Sensitivity Analysis Methods in the Biomedical Sciences. Math. Biosci. 2020, 323, 108306. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Al-Shuhail, A.A.; Khulief, Y.A. Numerical Modeling of The Geomechanical Behavior of Ghawar Arab-D Carbonate Petroleum Reservoir Undergoing CO2 Injection. Environ. Earth Sci. 2016, 75, 1–15. [Google Scholar] [CrossRef]
- Rihan, F.A. Sensitivity Analysis for Dynamic Systems with Time-lags. J. Comput. Appl. Math. 2003, 151, 445–462. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Liu, J.; Jiang, C.; Liu, G. Optimal Sparse Polynomial Chaos Expansion for Arbitrary Probability Distribution and Its Application on Global Sensitivity Analysis. Comput. Methods Appl. Mech. Eng. 2022, 399, 115368. [Google Scholar] [CrossRef]
- Takezawa, A.; Kitamura, M. Sensitivity Analysis and Optimization of Vibration Modes in Continuum Systems. J. Sound Vib. 2013, 332, 1553–1566. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.F.; Fei, Q.G.; Jiang, D.; Wu, S.Q. Substructure-based Model Updating using Residual Flexibility Mixed-Boundary Method. J. Mech. Sci. Technol. 2017, 31, 759–769. [Google Scholar] [CrossRef]
- Xu, Y.J.; Tian, Y.; Li, Q.Y.; Li, Y.B.; Zhang, D.H.; Jiang, D. Vibro-Impact Response Analysis of Collision with Clearance: A Tutorial. Machines 2022, 10, 814. [Google Scholar] [CrossRef]
- Sun, Y.H.; Li, M.X.; Dong, R.W.; Chen, W.Y.; Jiang, D. Vision-Based Detection of Bolt Loosening Using YOLOv5. Sensors 2022, 22, 5184. [Google Scholar] [CrossRef]
- Lu, Z.R.; Law, S.S. Features of Dynamic Response Sensitivity and Its Application in Damage Detection. J. Sound Vib. 2007, 303, 305–329. [Google Scholar] [CrossRef]
- Weng, S.; Tian, W.; Zhu, H.P.; Xia, Y.; Gao, F.; Zhang, Y.T.; Li, J.J. Dynamic Condensation Approach to Calculation of Structural Responses and Response Sensitivities. Mech. Syst. Signal Process. 2017, 88, 302–317. [Google Scholar] [CrossRef]
- Park, S.; Kapania, R.K.; Kim, S.J. Nonlinear Transient Response and Second-order Sensitivity using Time Finite Element Method. AIAA J. 1999, 37, 613–622. [Google Scholar] [CrossRef]
- Kim, N.H.; Choi, K.K. Design Sensitivity Analysis and Optimization of Nonlinear Transient Dynamics. Mech. Struct. Mach. 2001, 29, 351–371. [Google Scholar] [CrossRef]
- Cho, S.; Choi, K.K. Design Sensitivity Analysis and Optimization of Non-linear Transient Dynamics. Part I-Sizing Design. Int. J. Numer. Meth. Eng. 2000, 48, 351–373. [Google Scholar] [CrossRef]
- Liu, S.B.; Canfield, R.A. Continuum Shape Sensitivity for Nonlinear Transient Aeroelastic Gust Response. In Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO, USA, 4–7 April 2011; p. 1971. [Google Scholar]
- Subramanian, A.; Mahadevan, S. Variance-based Sensitivity Analysis of Dynamic Systems with Both Input and Model Uncertainty. Mech. Syst. Signal. Process. 2022, 166, 108423. [Google Scholar] [CrossRef]
- Abbiati, G.; Marelli, S.; Tsokanas, N.; Sudret, B.; Stojadinović, B. A global Sensitivity Analysis Framework for Hybrid Simulation. Mech. Syst. Signal Process. 2021, 146, 106997. [Google Scholar] [CrossRef]
- Wan, H.-P.; Ren, W.-X.; Todd, M.D. Arbitrary Polynomial Chaos Expansion Method for Uncertainty Quantification and Global Sensitivity Analysis in Structural Dynamics. Mech. Syst. Signal Process. 2020, 142, 106732. [Google Scholar] [CrossRef]
- Bogomolni, M.; Kirsch, U.; Sheinman, I. Nonlinear Dynamic Sensitivities of Structures using Combined Approximations. AIAA J. 2006, 44, 2765–2772. [Google Scholar] [CrossRef]
- Haftka, R.T.; Adelman, H.M. Recent Developments in Structural Sensitivity Analysis. Struct. Optim. 1989, 1, 137–151. [Google Scholar] [CrossRef]
- Wang, B.P.; Apte, A.P. Complex Variable Method for Eigensolution Sensitivity Analysis. AIAA J. 2006, 44, 2958–2961. [Google Scholar] [CrossRef]
- Kim, S.H.; Ryu, J.Y.; Cho, M.Y. Numerically Generated Tangent Stiffness Matrices using the Complex Variable Derivative Method for Nonlinear Structural Analysis. Comput. Methods Appl. Mech. Eng. 2011, 200, 403–413. [Google Scholar] [CrossRef]
- Garza, J.; Millwater, H. Multicomplex Newmark-Beta Time Integration Method for Sensitivity Analysis in Structural Dynamics. AIAA J. 2015, 53, 1188–1198. [Google Scholar] [CrossRef]
- Cao, Z.F.; Fei, Q.G.; Jiang, D.; Kapania, R.K.; Wu, S.Q.; Jin, H. A Sensitivity-based Nonlinear Finite Element Model Updating Method for Nonlinear Engineering Structures. Appl. Math. Model. 2021, 100, 632–655. [Google Scholar] [CrossRef]
- Keulen, F.V.; Haftka, R.T.; Kim, N.H. Review of Options for Structural Design Sensitivity Analysis. Part 1: Linear Systems. Comput. Methods Appl. Mech. Eng. 2005, 194, 3213–3243. [Google Scholar] [CrossRef]
- Cho, M.; Kim, H. A Refined Semi-analytic Design Sensitivity Based on Mode Decomposition and Neumann Series. Int. J. Numer. Meth. Eng. 2005, 62, 19–49. [Google Scholar] [CrossRef]
- Wang, W.J.; Clausen, P.M.; Bletzinger, K.U. Improved Semi-analytical Sensitivity Analysis using A Secant Stiffness Matrix for Geometric Nonlinear Shape Optimization. Comput. Struct. 2015, 146, 143–151. [Google Scholar] [CrossRef]
- Fernandez, F.; Tortorelli, D.A. Semi-analytical Sensitivity Analysis for Nonlinear Transient Problems. Struct. Multidiscip. Optim. 2018, 58, 2387–2410. [Google Scholar] [CrossRef]
- Kang, B.S.; Park, G.J.; Arora, J.S. A Review of Optimization of Structures Subjected to Transient Loads. Struct. Multidiscip. Optim. 2006, 31, 81–95. [Google Scholar] [CrossRef]
- Yun, K.S.; Youn, S.K. Design Sensitivity Analysis for Transient Response of Non-viscously Damped Dynamic Systems. Struct. Multidiscip. Optim. 2017, 55, 2197–2210. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Dopico, D.; Sandu, C.; Sandu, A. Dynamic Response Optimization of Complex Multibody Systems in A Penalty Formulation using Adjoint Sensitivity. J. Comput. Nonlinear Dyn. 2015, 10, 031009. [Google Scholar] [CrossRef] [Green Version]
- Lauss, T.; Oberpeilsteiner, S.; Steiner, W.; Nachbagauer, K. The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics. J. Comput. Nonlinear Dyn. 2017, 12, 031016. [Google Scholar] [CrossRef]
- Yan, K.; Cheng, G.D. An Adjoint Method of Sensitivity Analysis for Residual Vibrations of Structures Subject to Impacts. J. Sound Vib. 2018, 418, 15–35. [Google Scholar] [CrossRef]
- Kerschen, G.; Worden, K.; Vakakis, A.F.; Golinval, J.C. Past, Present and Future of Nonlinear System Identification in Structural Dynamics. Mech. Syst. Signal Process. 2006, 20, 505–592. [Google Scholar] [CrossRef] [Green Version]
- Conte, J.P.; Vijalapura, P.K.; Meghella, M. Consistent Finite-element Response Sensitivity Analysis. J. Eng. Mech. 2003, 129, 1380–1393. [Google Scholar] [CrossRef] [Green Version]
- Gu, Q.; Wang, G. Direct Differentiation Method for Response Sensitivity Analysis of a Bounding Surface Plasticity Soil Model. Soil. Dyn. Earthq. Eng. 2013, 49, 135–145. [Google Scholar] [CrossRef]
- Li, Y.; Huang, S.R.; Lin, C.; Gu, Q.; Qiu, Z.J. Response Sensitivity Analysis for Plastic Plane Problems Based on Direct Differentiation Method. Comput. Struct. 2017, 182, 392–403. [Google Scholar] [CrossRef]
- Ding, Z.; Li, L.; Zou, G.M.; Kong, J.Y. Design Sensitivity Analysis for Transient Response of Non-viscously Damped Systems Based on Direct Differentiate Method. Mech. Syst. Signal Process. 2019, 121, 322–342. [Google Scholar] [CrossRef]
- Wojtkiewicz, S.F.; Johnson, E.A. Efficient Sensitivity Analysis of Structures with Local Modifications. I: Time Domain Responses. J. Eng. Mech. 2014, 140, 04014067. [Google Scholar] [CrossRef]
- Cao, Z.F.; Fei, Q.G.; Jiang, D.; Zhang, D.H.; Jin, H.; Zhu, R. Dynamic Sensitivity-based Finite Element Model Updating for Nonlinear Structures using Time-Domain Responses. Int. J. Mech. Sci. 2020, 184, 105788. [Google Scholar] [CrossRef]
- Wang, X.; Hill, T.L.; Neild, S.A.; Shaw, A.D.; Haddad, K.H.; Friswell, M.I. Model Updating Strategy for Structures with Localised Nonlinearities using Frequency Response Measurements. Mech. Syst. Signal Process. 2018, 100, 940–961. [Google Scholar] [CrossRef] [Green Version]
- Touzé, C.; Vizzaccaro, A.; Thomas, O. Model Order Reduction Methods for Geometrically Nonlinear Structures: A Review of Nonlinear Techniques. Nonlinear Dyn. 2021, 105, 1141–1190. [Google Scholar] [CrossRef]
Cases | Time Step Δts/s | Computational Time/s | Relative Error/% | ||
---|---|---|---|---|---|
Case 1 | 1.0 × 10−1 | 199.06 | 60.64 | 37.73 | 29.14 |
Case 2 | 1.0 × 10−2 | 199.97 | 5.96 | 4.10 | 3.37 |
Case 3 | 1.0 × 10−3 | 208.95 | 0.63 | 0.45 | 0.39 |
Case 4 | 1.0 × 10−4 | 287.94 | 0.10 | 0.09 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Yao, J.; Jia, Z.; Liang, D. Transient Response Sensitivity Analysis of Localized Nonlinear Structure Using Direct Differentiation Method. Machines 2022, 10, 1039. https://doi.org/10.3390/machines10111039
Cao Z, Yao J, Jia Z, Liang D. Transient Response Sensitivity Analysis of Localized Nonlinear Structure Using Direct Differentiation Method. Machines. 2022; 10(11):1039. https://doi.org/10.3390/machines10111039
Chicago/Turabian StyleCao, Zhifu, Jianyao Yao, Zichu Jia, and Daosen Liang. 2022. "Transient Response Sensitivity Analysis of Localized Nonlinear Structure Using Direct Differentiation Method" Machines 10, no. 11: 1039. https://doi.org/10.3390/machines10111039
APA StyleCao, Z., Yao, J., Jia, Z., & Liang, D. (2022). Transient Response Sensitivity Analysis of Localized Nonlinear Structure Using Direct Differentiation Method. Machines, 10(11), 1039. https://doi.org/10.3390/machines10111039