# Correlations in Two-Qubit Systems under Non-Dissipative Decoherence

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Framework

#### 2.1. Quantum Discord

#### 2.2. Generalized Measures of Correlations

#### 2.2.1. Squared Bures Distance

#### 2.2.2. Squared Hellinger Distance

#### 2.2.3. Quantum Jensen–Shannon Divergence

#### 2.3. Two-Qubit States with Maximally Mixed Marginals

## 3. Results

- If $c=|{c}_{1}|$⇒$|{z}_{1}\left({\mathit{s}}_{M}\right)|=1$, ${z}_{2}\left({\mathit{s}}_{M}\right)={z}_{3}\left({\mathit{s}}_{M}\right)=0$;
- If $c=|{c}_{2}|$⇒$|{z}_{2}\left({\mathit{s}}_{M}\right)|=1$, ${z}_{1}\left({\mathit{s}}_{M}\right)={z}_{3}\left({\mathit{s}}_{M}\right)=0$;
- If $c=|{c}_{3}|$⇒$|{z}_{3}\left({\mathit{s}}_{M}\right)|=1$, ${z}_{2}\left({\mathit{s}}_{M}\right)={z}_{1}\left({\mathit{s}}_{M}\right)=0$.

#### Behavior of Correlations under Non-Dissipative Decoherence

**Example**

**1.**

**Example**

**2.**

**Example**

**3.**

## 4. Concluding Remarks

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Moore, G.E. Cramming More Components onto Integrated Circuits. Electronics
**1965**, 38, 114. [Google Scholar] [CrossRef] - Le Bellac, M. A Short Introduction to Quantum Information and Quantum Computation; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Datta, A.; Shaji, A.; Caves, C.M. Quantum Discord and the Power of One Qubit. Phys. Rev. Lett.
**2008**, 100, 050502. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Lanyon, B.P.; Barbieri, M.; Almeida, M.P.; White, A.G. Experimental Quantum Computing without Entanglement. Phys. Rev. Lett.
**2008**, 101, 200501. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Knill, E.; Laflamme, R. Power of One Bit of Quantum Information. Phys. Rev. Lett.
**1998**, 81, 5672. [Google Scholar] [CrossRef] [Green Version] - Laflamme, R.; Cory, D.; Negrevergne, C.; Viola, L. NMR quantum information processing and entanglement. Quantum Inf. Comp.
**2002**, 2, 166. [Google Scholar] - Braunstein, S.L.; Caves, C.M.; Jozsa, R.; Linden, N.; Popescu, S.; Schack, R. Separability of very noisy mixed states and implications for NMR Quantum computing. Phys. Rev. Lett.
**1999**, 83, 1054. [Google Scholar] [CrossRef] [Green Version] - Meyer, D.A. Sophisticated Quantum Search Without Entanglement. Phys. Rev. Lett.
**2000**, 85, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Datta, A.; Flammia, S.T.; Caves, C.M. Entanglement and the power of one qubit. Phys. Rev. A
**2005**, 72, 042316. [Google Scholar] [CrossRef] [Green Version] - Datta, A.; Vidal, G. Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A
**2007**, 75, 042310. [Google Scholar] [CrossRef] [Green Version] - Henderson, L.; Vedral, V. Classical, quantum and total correlations. J. Phys. A
**2001**, 34, 6899. [Google Scholar] [CrossRef] - Ollivier, H.; Zurek, W.H. Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett.
**2001**, 88, 017901. [Google Scholar] [CrossRef] [PubMed] - Modi, K.; Brodutch, A.; Cable, H.; Paterek, T.; Vedral, V. The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys.
**2012**, 84, 1655. [Google Scholar] [CrossRef] [Green Version] - Adesso, G.; Bromley, T.R.; Cianciaruso, M. Measures and applications of quantum correlations. J. Phys. A Math. Theor.
**2016**, 49, 473001. [Google Scholar] [CrossRef] - Bosyk, G.M.; Bellomo, G.; Zozor, S.; Portesi, M.; Lamberti, P.W. Unified entropic measures of quantum correlations induced by local measurements. Phys. A Stat. Mech. Appl.
**2016**, 462, 930–939. [Google Scholar] [CrossRef] [Green Version] - Rossignoli, R.; Canosa, N.; Ciliberti, L. Generalized entropic measures of quantum correlations. Phys. Rev. A
**2010**, 82, 052342. [Google Scholar] [CrossRef] [Green Version] - Rossignoli, R.; Canosa, N.; Ciliberti, L. Quantum correlations and least disturbing local measurements. Phys. Rev. A
**2011**, 84, 052329. [Google Scholar] [CrossRef] - Bussandri, D.G.; Majtey, A.P.; Lamberti, P.W.; Osán, T.M. Generalized approach to quantify correlations in bipartite quantum systems. Quantum Inf. Proc.
**2019**, 18, 57. [Google Scholar] [CrossRef] [Green Version] - Brodutch, A.; Modi, K. Criteria for measures of quantum correlations. Quantum Inf. Comp.
**2012**, 12, 721. [Google Scholar] - Uhlmann, A. The “transition probability” in the state space of a *-algebra. Rep. Math. Phys.
**1976**, 9, 273. [Google Scholar] - Jozsa, R. Fidelity for Mixed Quantum States. J. Mod. Opt.
**1994**, 41, 2315. [Google Scholar] [CrossRef] - Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys.
**2009**, 81, 865. [Google Scholar] [CrossRef] [Green Version] - Luo, S. Quantum discord for two-qubit systems. Phys. Rev. A
**2008**, 77, 042303. [Google Scholar] [CrossRef] - Maziero, J.; Céleri, L.C.; Serra, R.M.; Vedral, V. Classical and quantum correlations under decoherence. Phys. Rev. A
**2009**, 80, 044102. [Google Scholar] [CrossRef] [Green Version] - Céleri, L.C.; Maziero, J.; Serra, R.M. Theoretical and experimental aspects of quantum discord and related measures. Int. J. Quantum Inf.
**2011**, 9, 1837. [Google Scholar] [CrossRef] - Lo Franco, R.; Bellomo, B.; Maniscalco, S.; Compagno, G. Dynamics of quantum correlations in two-qubit systems within non-Markovian environments. Int. J. Mod. Phys. B
**2013**, 27, 1345053. [Google Scholar] [CrossRef] [Green Version] - Ferraro, A.; Aolita, L.; Cavalcanti, D.; Cucchietti, F.M.; Acín, A. Optimal reconstruction of the states in qutrit systems. Phys. Rev. A
**2010**, 81, 044102. [Google Scholar] - Cianciaruso, M.; Bromley, T.R.; Roga, W.; Lo Franco, R.; Adesso, G. Universal freezing of quantum correlations within the geometric approach. Sci. Rep.
**2015**, 5, 10177. [Google Scholar] [CrossRef] [Green Version] - Girolami, D.; Adesso, G. Quantum discord for general two-qubit states: Analytical progress. Phys. Rev. A
**2011**, 83, 052108. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Dynamics of the generalized total correlation measures as a function of $\gamma t$ for ${c}_{1}\left(0\right)=0.8$, ${c}_{2}\left(0\right)=-{c}_{3}\left(0\right)$, ${c}_{3}\left(0\right)=0.6$.

**Figure 2.**Dynamics of the generalized classical correlation measures as a function of $\gamma t$ for ${c}_{1}\left(0\right)=0.8$, ${c}_{2}\left(0\right)=-{c}_{3}\left(0\right)$, ${c}_{3}\left(0\right)=0.6$.

**Figure 3.**Dynamics of the generalized quantum correlation measures as a function of $\gamma t$ for ${c}_{1}\left(0\right)=0.8$, ${c}_{2}\left(0\right)=-{c}_{3}\left(0\right)$, ${c}_{3}\left(0\right)=0.6$.

**Figure 4.**Dynamics of the generalized quantum correlation measures for the quantum Jensen–Shannon divergence, as a function of $\gamma t$, considering the initial conditions of the freezing phenomenon of quantum discord: ${c}_{1}\left(0\right)=0.8$, ${c}_{2}\left(0\right)=-{c}_{1}\left(0\right){c}_{3}\left(0\right)$, ${c}_{3}\left(0\right)=0.6$. ${t}^{\ast}\approx 0.144$.

**Figure 5.**Dynamics of the generalized quantum correlation measures for the squared Bures distance case, as a function of $\gamma t$, considering the initial conditions of the freezing phenomenon of quantum discord: ${c}_{1}\left(0\right)=0.8$, ${c}_{2}\left(0\right)=-{c}_{1}\left(0\right){c}_{3}\left(0\right)$, ${c}_{3}\left(0\right)=0.6$. ${t}^{\ast}\approx 0.144$.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bussandri, D.G.; Osán, T.M.; Lamberti, P.W.; Majtey, A.P.
Correlations in Two-Qubit Systems under Non-Dissipative Decoherence. *Axioms* **2020**, *9*, 20.
https://doi.org/10.3390/axioms9010020

**AMA Style**

Bussandri DG, Osán TM, Lamberti PW, Majtey AP.
Correlations in Two-Qubit Systems under Non-Dissipative Decoherence. *Axioms*. 2020; 9(1):20.
https://doi.org/10.3390/axioms9010020

**Chicago/Turabian Style**

Bussandri, Diego G., Tristán M. Osán, Pedro W. Lamberti, and Ana P. Majtey.
2020. "Correlations in Two-Qubit Systems under Non-Dissipative Decoherence" *Axioms* 9, no. 1: 20.
https://doi.org/10.3390/axioms9010020