# On One Problems of Spectral Theory for Ordinary Differential Equations of Fractional Order

## Abstract

**:**

## 1. Introduction

## 2. Results

**Theorem**

**1**(

**Livshits**)

**.**

**Definition**

**1.**

**Lemma**

**1.**

**Proof**

**of**

**Lemma**

**1.**

**Remark**

**1.**

**Lemma**

**2**(

**Dzhrbaschian-Nersisian**)

**.**

**Theorem**

**2.**

**Proof**

**of**

**Theorem**

**2.**

**Remark**

**2.**

**Theorem**

**3.**

**Proof**

**of**

**Theorem**

**3.**

**Corollary**

**1.**

**Theorem**

**4.**

**Proof.**

## 3. Conclusions

## Funding

## Conflicts of Interest

## References

- Aleroev, T.S.; Aleroeva, H.T. On a class of non-selfadjoint operators, corresponding to differential equations of fractional order. Russ. Math.
**2014**, 58, 3–12. [Google Scholar] [CrossRef] - Aleroev, T.S. Completeness of the system of eigenfunctions of a fractional-order differential operator. Differ. Equ.
**2000**, 36, 918–919. [Google Scholar] [CrossRef] - Aleroev, T.S. Boundary-Value Problems for Differential Equations with Fractional Derivatives. Ph.D. Thesis, Moscow State University, Moscow, Russia, 2000. [Google Scholar]
- Aleroev, T.S.; Aleroeva, H.T.; Huang, J.; Tamm, M.V.; Tang, Y.; Zhao, Y. Boundary value problems of fractional Fokker-Planck equations. Comput. Math. Appl.
**2017**, 73, 959–969. [Google Scholar] [CrossRef] - Livshits, M.S. On spectral decomposition of linear non-selfadjoint operators. Am. Math. Soc.
**1954**, 34, 145–199. [Google Scholar] - Dzhrbashian, M.M. The boundary-value problem for a differential fractional-order operator of the Sturm–Liouville type. Izv. Akad. Nauk ArmSSR Ser. Mat.
**1970**, 5, 71–96. [Google Scholar] - Agibalova, A.V. On the completeness of a system of eigenfunctions and associated functions of differential operators of the orders (2 − φ) and (1 − φ). J. Math. Sci.
**2011**, 174, 425–436. [Google Scholar] [CrossRef] - Agibalova, A.V. On the completeness of the systems of root functions of a fractional-order differential operator with matrix coefficients. Matematicheskie Zametki
**2010**, 88, 317–320. [Google Scholar] [CrossRef] - Malamud, M.M. Similarity of Volterra operators and related problems in the theory of differential equations of fractional orders. (Russian). Trans. Moscow Math. Soc.
**1994**, 55, 57–122. [Google Scholar] - Malamud, M.M.; Oridoroga, L.L. Analog of the Birkhoff theorem and the completeness results for fractional order differential equations. Russ. J. Math. Phys.
**2001**, 8, 287–308. [Google Scholar] - Malamud, M.M.; Oridoroga, L.L. On some questions of the spectral theory of ordinary differential fractional-order equation. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki
**1998**, 9, 39–47. [Google Scholar] - Malamud, M.M. Spectral theory of fractional order integration operators, their direct sums, and similarity problem to these operators of their weak perturbations. In Handbook of Fractional Calculus with Applications. Volume 1: Basic Theory; Kochubei, A., Luchko, Y., Eds.; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019. [Google Scholar]
- Aleroev, T.S. On one class of operators associated with differential equations of fractional order. Sib. Math. J.
**2005**, 46, 963–968. [Google Scholar] [CrossRef] - Aleroev, T.S.; Aleroeva, H.T. Problems of Sturm-Liouville type for differential equations with fractional derivatives. In Handbook of Fractional Calculus with Applications. Volume 2: Fractional Differential Equations; Kochubei, A., Luchko, Y., Eds.; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019. [Google Scholar]
- Aleroev, T.S.; Aleroeva, H.T.; Nie, N.-M.; Tang, Y.-F. Boundary value problems for differential equations of fractional order. Mem. Differ. Equ. Math. Phys.
**2010**, 49, 19–82. [Google Scholar] [CrossRef] - Ali, M.; Aziz, S.; Malik, S.A. Inverse source problems for a space–time fractional differential equation. Inverse Probl. Sci. Eng.
**2019**. [Google Scholar] [CrossRef] - Gohberg, I.C.; Krein, M.G. Introduction to the Theory of Linear Non-selfadjoint Operators; American Mathematical Society: Providence, RI, USA, 1969. [Google Scholar]
- Dzhrbashian, M.M. Integral Transforms and Representation of Functions in The Comples Domain; Nauka: Moscow, Russia, 1966. [Google Scholar]
- Aleroev, T.S.; Kekharsaeva, E.R. Boundary value problems for differential equations with fractional derivatives. Integral Transform. Spec. Funct.
**2017**, 28, 900–908. [Google Scholar] [CrossRef] - Lidskii, V.B. Conditions for completeness of a system of root subspaces for non-selfadjoint operators with discrete spectrum. Tr. Mosk. Mat. Obs.
**1959**, 8, 83–120. [Google Scholar] - Aleroev, T.; Kirane, M.; Tang, Y.F. Boundary value problems for differential equations of fractional order. J. Math. Sci.
**2013**, 194, 499–512. [Google Scholar] [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Aleroev, T.
On One Problems of Spectral Theory for Ordinary Differential Equations of Fractional Order. *Axioms* **2019**, *8*, 117.
https://doi.org/10.3390/axioms8040117

**AMA Style**

Aleroev T.
On One Problems of Spectral Theory for Ordinary Differential Equations of Fractional Order. *Axioms*. 2019; 8(4):117.
https://doi.org/10.3390/axioms8040117

**Chicago/Turabian Style**

Aleroev, Temirkhan.
2019. "On One Problems of Spectral Theory for Ordinary Differential Equations of Fractional Order" *Axioms* 8, no. 4: 117.
https://doi.org/10.3390/axioms8040117